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Abstract 

Advances in computing and mathematical techniques have given rise to 

increasingly complex models employed in the management of risk across numerous 

disciplines. While current military doctrine embraces sound practices for identifying, 

communicating, and mitigating risk, the complex nature of modern operational 

environments prevents the enumeration of risk factors and consequences necessary to 

leverage anything beyond rudimentary risk models. Efforts to model military operational 

risk in quantitative terms are stymied by the interaction of incomplete, inadequate, and 

unreliable knowledge. 

 

Specifically, it is evident that joint and inter-Service literature on risk are 

inconsistent, ill-defined, and prescribe imprecise approaches to codifying risk. Notably, the 

near-ubiquitous use of risk matrices (along with other qualitative methods), are 

demonstrably problematic at best, and downright harmful at worst, due to 

misunderstanding and misapplication of their quantitative implications. The use of fuzzy 

set theory is proposed to overcome the pervasive ambiguity of risk modeling encountered 

by today’s operational planners. Fuzzy logic is adept at addressing the problems caused by 

imperfect and imprecise knowledge, entangled causal relationships, and the linguistic input 

of expert opinion. To this end, a fuzzy inference system is constructed for the purpose of 

risk appraisal in military operational planning. 
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FUZZY INFERENCE SYSTEMS FOR RISK APPRAISAL 

IN MILITARY OPERATIONAL PLANNING 

 
I.  Introduction 

“The art of war deals with living and with moral forces. Consequently, … 
it must always leave a margin for uncertainty, in the greatest things as much 
as in the smallest. […] Mathematical factors never find a firm basis in 
military calculations. From the very start there is an interplay of 
possibilities, probabilities, good luck and bad that weaves its way 
throughout the length and breadth of the tapestry.” 
 

- Carl von Clausewitz 
On War (1832, 86) 

 

1.1 General Issue 

Clausewitz’s seminal work on the theory of war certainly does not advocate for the 

wholesale abandonment of empirical method in military planning and decision-making. 

Rather, he suggests that while it is “quite clear how greatly the objective nature of war 

makes it a matter of assessing probabilities,” it is precisely the confluence of this 

uncertainty with the element of chance, derived predominantly from the human element, 

that defines the subjective nature of war and that makes its conduct, relative to any other 

human activity, a gamble (Clausewitz, 85). It is prudent that military strategists and 

policymakers employ various methods to quantify the odds, risks, and opportunities of this 

deadly gamble. Nevertheless, the reader is cautioned that quantitative analysis should not 

direct the dogmatic application of prescriptive formulation; the complexity and constant 

change inherent to war prohibit this. Instead, rigorously applied principles are 

“indispensable to… the theory of war that leads to positive doctrine; for in these doctrines 

the truth can express itself only in such compressed forms” (Clausewitz, 152). 
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The violence and politics that Clausewitz observed on Napoleonic battlefields is no 

less central to modern conflict, but technology and globalization have since facilitated the 

natural extension of warfare into the domains of cyberspace, extra-atmospheric space, and 

perception space; each of these domains possessing unique and increasingly diverse means 

of waging combat. This nonlinear and multi-dimensional battlespace obfuscates the coup 

d’oeil, or acuity for innate truth, of even the most gifted commanders, who were once 

advised to “familiarize himself only with those activities that empty themselves into the 

great ocean of war” (Clausewitz, 144). In keeping with this analogy, the rivers discharging 

into today’s ocean of warfare are vast in number, each fed by a multitude of tributaries 

riddled with unique hazards perceptible only to experienced helmsmen. Correspondingly, 

commanders are progressively dependent on the informed analysis and communication of 

risk by expert subordinate staff who must fine-tune their senses to pierce the veil of 

Clausewitzian fog that obscures their specific risk domains. Opportunities to further inform 

military planning processes also exists in the prevalence of data and the promise of machine 

learning, driven by the increasing digitalization of maneuver forces and command and 

control systems.   

1.2 Problem Statement 

Advances in computing and mathematical techniques have given rise to 

increasingly complex models employed in the management of risk across numerous 

disciplines. While current military doctrine embraces sound practices for identifying, 

communicating, and mitigating risk, the nature of modern operational environments 

frustrates the enumeration of risk factors and consequences necessary to leverage anything 
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beyond rudimentary risk models. Efforts to model military operational risk in quantitative 

terms are stymied by the interaction of incomplete, inadequate, and unreliable knowledge. 

Recognizing the limitations of strict mathematical formulation in evaluating risk, current 

Department of Defense (DoD) and Service literature are necessarily vague in advocating 

for the use of numerical techniques, instead insisting on the primacy of qualitative 

assessments utilizing a common lexicon of linguistic categorization. Inflexibly dependent 

on the persistent input of expert opinion, such methodologies are inherently plodding and 

unresponsive to reformulation, are vulnerable to inconsistency in subjective judgment, and 

disallow the comprehensive assessment of risk under meaningful singleton values for the 

purpose of course of action comparison. 

1.3 Research Objective 

It is the objective of this thesis to begin the development of a viable method for the 

quantitative assessment of military operational risk in joint planning.  

1.4 Investigative Questions 

Oriented on the research objective, four investigative questions (IQ) are employed 

to structure the direction and content of the research.  

IQ1. How is operational risk addressed in current joint and Service literature? 

IQ2. What challenges are presented by the current doctrinal means of quantitative 

risk evaluation?   

IQ3. What are the characteristics of fuzzy logic that suggest its ability to reconcile 

quantitative risk evaluation with its inherent challenges? 
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IQ4. Is the proposed model, a fuzzy inference system, suitable for the quantification 

of risk within the current military planning and risk frameworks?  

Each IQ is independently examined in the subsequent chapters. Chapter II addresses the 

first three in sequence: IQ1 in Section 2.2, IQ2 in Section 2.3, and IQ3 in Section 2.4. 

Chapter III illustrates the model’s development and relationship to current planning 

practices. Chapter IV presents the practical results of an example scenario. Taken together, 

these latter two chapters support the analysis of IQ4. Chapter V formally presents the 

summary answers to all of the thesis’ investigative questions. 

1.5 Methodology 

The use of fuzzy set theory is proposed to overcome the pervasive ambiguity of risk 

modeling encountered by today’s operational planners. Fuzzy logic is adept at addressing 

the problems caused by imperfect and imprecise knowledge, entangled causal 

relationships, and the linguistic input of expert opinion (Shang, 3). Specifically, a fuzzy 

inference system is introduced that capitalizes on the current construct of the Joint Planning 

Process’ (JPP) information requirements to inform model construction as a natural 

byproduct of planning and that subordinates itself as the quantitative engine of the Joint 

Risk Analysis Methodology (JRAM). Fuzzy inference systems encode functional expertise 

through a logical rule base that manipulates linguistic variables and ambiguous 

categorizations, ultimately producing an actionable and discrete output. As the JPP and 

JRAM are largely mimicked by the individual Service doctrines, the proposed 

methodology is generalized for use across the DoD and for operational risk assessments at 

the strategic, operational, or tactical level. 
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1.6 Assumptions and Limitations 

By definition, fuzzy inference systems emulate human deductive reasoning through 

the establishment of a logical rule base encoded from expert opinion (Kosko, 25). 

Furthermore, an inference model’s linguistic variables (including the shapes and quantities 

of their corresponding membership functions) are reliant on an extensive knowledge base 

predicated on available experience data or, again, subject matter expertise. Therefore, the 

ability to formulate a fuzzy inference system is heavily dependent on the existence and 

input of expert opinion. This dictates the assumption that the risk analyst have 

unconstrained access to necessary expertise during a model’s construction. 

Secondly, a primary advantage in using a fuzzy approach lies in its ability to deal 

with imprecision and ambiguity. In the context of military operational risk, other 

deterministic or probabilistic methods may involve arrogant prescriptions resulting in 

overly precise, but less accurate, results. Alternatively, fuzzy systems exchange precision 

for accuracy; they do not guarantee optimality even under conditions of omniscience. 

Rather, the degree of constituent set fuzziness correlates with the model’s range of 

precision; it is assumed that this level of precision is sufficient and that the solution thus 

derived is acceptably accurate. This effect may be more readily recognized when output 

risk levels are defined in concrete terms like cost or casualty rate, as opposed to a generic 

‘risk level.’  

With regard to this preceding concern, it is certainly possible for fuzzy output 

variables to be defined in explicit and tactile terms. However, this thesis assumes that the 

model is predominantly utilized in comparative processes (for instance, course of action 
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comparison in operational planning). The meaning of a risk value must be assessed relative 

to other risk values generated by the same model; comparing results from dissimilar models 

may encourage inconsistent risk decisions. This is not to suggest a paramount rigidity in 

application; fuzzy inference systems are flexible and easily accept modifications based on 

the emergence of new data or change to expert opinion. Indeed, better informed models are 

likely to have more accurate resolution. However, given a change to a model, all considered 

alternatives would require reassessment. 

While trivial instances of fuzzy inference systems may be evaluated manually, the 

volume of calculation necessitates the use of computer-based models in any practical 

scenario. A number of commercial tools are available for building and evaluating fuzzy 

control and fuzzy inference systems. While not available to most military staffs at present, 

it is assumed that the risk analyst has access to software or a programming language that 

facilitates the implementation of fuzzy models. This thesis employs MATLAB’s Fuzzy 

Logic Toolbox in the construction and analysis of the example scenario presented in 

Chapter IV. 
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1.7 Preview 

This research is structured in four succeeding chapters. Chapter II, Literature 

Review, examines three dominant themes. First, military operational risk is defined and 

explored in a general sense, but also from the joint and Service perspectives. In answering 

IQ1, this Section illuminates several doctrinal deficiencies; conspicuously, the combined 

literature is inconsistent in the representation of risk and reluctant to endorse quantitative 

practices beyond vague equivocations. Secondly, and addressing IQ2, several concerns 

with risk matrices are addressed, both as a conceptual framework for understanding risk 

and as the principal means of conveyance and visualization in military parlance. Third, the 

chapter presents an elementary but thorough introduction to fuzzy set theory and the 

mathematical principles necessary for the model’s execution. This portrayal of fuzzy logic 

is expectedly indicative of its utility as a method for dealing with insufficient and imprecise 

data, a critical aspect of the challenge posed by IQ3. Chapter III, Methodology, presents a 

detailed description of the proposed model in two phases. The first phase, knowledge 

elicitation, informs the model’s construction as a parallel procedure to the JPP. The second 

phase, execution of the inference engine, applies the mathematical principles introduced in 

Chapter II to the constructed model to obtain a quantitative output and visual 

representation. Chapter IV, Analysis, demonstrates use of the model through the fictional 

scenario of a tactical rotary wing mission. This chapter illustrates a practical use of the 

methodology and suggests at its suitability, in response to IQ4, as a model for risk appraisal 

and decision-making. Finally, Chapter V, Conclusion and Recommendations, summarizes 

the research and suggests its significance, its potential for use, and areas for future research. 
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II. Literature Review 

“Even in reasoning upon some subjects, it is a mistake to aim at an 
unattainable precision. It is better to be vaguely right then exactly wrong.”1 
 

- Carveth Read 
Logic, Deductive and Inductive (1898, 351) 

2.1 Chapter Overview 

The purpose of the chapter is threefold. Sections 2.2 through 2.2.2 examine some 

historical notions of risk and attempts at quantification, but primarily serve as a brief survey 

of the current doctrine of the US Department of Defense and its subordinate Services as it 

pertains to risk assessment and management. Section 2.3 presents a criticism of commonly 

practiced qualitative methodologies; several latent complications introduced by the 

military’s prosaic use of risk matrices are discussed. Lastly, Sections 2.4 through 2.4.3 

provide a primer on fuzzy logic, its basic set theory, membership functions, and operations 

on fuzzy sets. 

 

 

 

 

 

                                                 
1 Read, Carveth. (1920). Logic, Deductive and Inductive, 4th Ed. London: Simpkin, Marshall, Hamilton, 
Kent & Co. Ltd. The latter half of this quote is often misattributed to John Maynard Keynes. The famous 
economist’s father, John Neville Keynes, published Studies and Exercises in Formal Logic (1884) in 
attempt to synthesize deductive and inductive reasoning, and is cited prominently by Read. 
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2.2 Military Operational Risk 

Writing in the early part of the nineteenth century, at the culmination of the 

Napoleonic Wars and prior to the full realization of the Industrial Revolution, Clausewitz 

chronicled his insight on what was perhaps the most considerable human enterprise of the 

time, warfare. Although he identified uncertainty as a pillar of war’s “paradoxical trinity” 

(along with primordial violence and its subordination to politics), the concept of risk is not 

explicitly defined. Clausewitz’ discourse on the subject, while exhaustive, can largely be 

reduced to dependency on individual talent and luck. Contemporaneously, the decline of 

mercantilism and an emerging free-market economy provided an impetus for the 

mathematical treatment of the role of risk, as in Adam Smith’s The Wealth of Nations 

(1776), which questioned the utility of classical probability theory to decision-making 

based on amorphous and indeterminate informational constructs (Smith, 1776). Much later, 

and subsequently motivating Great Depression era studies in macroeconomics, formalized 

structures for calculating probabilities in the context of risk were introduced in John 

Maynard Keynes’ A Treatise on Probability (1921), presenting a degree-of-truth 

permitting interval approach to probability theory, and Frank Knight’s Risk, Uncertainty 

and Profit (1921), which notably distinguished risk and uncertainty relative to whether the 

associated probability distribution was known.  

 Wishing to avoid a comprehensive survey of uncertainty and probability, it is 

sufficient that the desire to understand to the role of ambiguity in business, finance, and 

economics continued to stimulate the evolution of quantitative risk analysis throughout the 

twentieth century. Over time, the concepts derived from the science of economic risk were 
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adapted for use in other disciplines; the practice of risk management is virtually ubiquitous 

in all major endeavors, ranging from healthcare, technology, energy, construction, project 

management, to defense and finance, among others. Indeed, many of the current 

academically accepted formulations and definitions in risk management are those proposed 

by the Basel Committee on Banking Supervision’s International Convergence of Capital 

Measurement and Capital Standards: A Revised Framework (2004), which is commonly 

referred to as the “Basel II Accord.” While predominantly concerned with monetary policy 

and the establishment of an infrastructure for managing for capital adequacy relative to risk 

exposure in international banking, Basel II pertinently segregates operational risk from the 

other risk categories of credit risk and market risk. Specifically, it defines Operational Risk 

(OR) as “the risk of loss resulting from inadequate or failed internal processes, people and 

systems or from external events” (BCBS, 2004).  

While the Basel II definition of OR is equally useful in conceptualizing the risks 

inherent to organizations engaged in armed conflict, the exact approaches used to calculate 

the associated capital requirements have little utility in this regard. Nevertheless, the shared 

sources of risk definition and management practices are reflected in the close taxonomical 

resemblance of military risk with its economically-oriented counterparts. Notably, the 

Chairman of the Joint Chiefs of Staff Manual (CJCSM) on Joint Risk Analysis (2016) cites 

a white paper published by the International Risk Governance Council (IRGC), Risk 

Governance: Towards and Integrative Approach, as foundational to the Department of 

Defense’s top-level literature on risk (Renn, 2006). Similarly used to shape the DoD’s risk 

framework is the International Organization for Standardization’s (ISO) publication, Risk 
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Management – Principles and Guidelines (2009). By the same token, the very impetus for 

this thesis’ methodology was in part stimulated by a series of joint studies sponsored by 

the Casualty Actuarial Society, the Canadian Institute of Actuaries, and the Society of 

Actuaries that explore the applicability of several fuzzy logic practices for risk 

management (Shang & Hossen, 2013; Shapiro & Koissi, 2015). A related effort, but 

singularly oriented on the specific technique of fuzzy inference, was also made on behalf 

of Colombia’s central bank (Reveiz & León, 2009). 

International project management, as one of the few fields that approaches the 

broad risk exposure experienced in military campaigns, is also potentially informative to 

the assessment of military risk. The prospect of achieving commercial success in 

underdeveloped but high-demand markets has motivated individual risk practitioners to 

scrutinize the complexities of international construction ventures and the accompanying 

difficulties in identifying critical risk contributors as studied by Kerur & Marshall (2012) 

and Li  (2009), while more extensive studies have been funded by the industry at large 

(Gibson & Walewski, 2004). Certainly, it is evident that many lucrative speculations are 

fraught with the challenges posed by diverse geographic environments, poor infrastructure, 

and corrupt or ineffective governance, to name a few. Future models for military 

operational risk may increasingly parallel the risk assessment structures present in this 

activity. Closely related to this concern is the development of a suitable catalogue for 

classification of global and country-specific risk factors. Many diverse efforts have been 

made to derive the key risk indicators for loss potential in uncertain environments 

(Anderson, Hager, & Vormeland, 2016), to model nation-state instability via multivariate 
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methods (Shearer & Marvin, 2012), and finally to model the risk drivers of construction 

cost performance utilizing fuzzy decision frameworks (Baloi & Price, 2003). 

2.2.1 Risk in the Department of Defense 

The capstone of all risk literature in the DoD is Joint Risk Analysis (CJCSM 

3105.01, 2016), which has the stated purpose of establishing a “Joint Risk Analysis 

Methodology [and introducing] a common risk lexicon to promote consistency across the 

Joint Force.” While specifically oriented on supporting risk management practices at the 

Joint Chiefs of Staff level and, in particular, for use in the “Strategic Planning Construct,” 

it remains the authoritative reference on risk for the Services, Combatant Commands, joint 

activities, and certain defense agencies and is applicable “across the entire spectrum of 

their responsibilities.” The JRAM is designed to standardize a framework of risk-decision 

processes and taxonomy that institutes best practices to evaluate, manage, and 

communicate comprehensive risk. Depicted in Figure 1, the Joint Risk Framework consists 

of three components (Risk Appraisal, Risk Management, and Risk Communication) and 

four subordinate activities (Problem Framing, Risk Assessment, Risk Judgment, and Risk 

Management). The illustration shows the cyclical conduct of the four activities, each 

posing a distinct question that respectively yields, for a given problem, well-defined and 

context-specific risk conventions, the identification and weighting of threats or hazards, a 

risk profile and quantitative evaluation, and concludes with mitigation actions and risk 

decisions (JRA, B-1). 
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Figure 1. The Joint Risk Framework. 
Source: Joint Risk Analysis, B-2. 

 

 Risk, under the JRAM, is defined as the “probability and consequence of an event 

causing harm to something valued” (JRA, B-1). In this context, Problem Framing retains 

the traditionally accepted risk conventions of “likelihood (probability) of event 

occurrence” and “severity (consequence) of harm caused.” In the JRA manual, probability 

and consequence are both divided into the four categories reflected in Table 1, while 

suggesting only several pages later that a more appropriate degree of categorization be five 

(JRA, B-7). Nevertheless, the document is careful not to be overly prescriptive; it 

recognizes that probability and consequence must be tailored to the specific risk scenario. 

For instance, an assessment of ~20% chance of occurrence in certain risks, like that of an 

aircraft shootdown, dubiously warrant a ‘Highly Unlikely’ linguistic appraisal; such a high 

probability is perhaps more contextually appropriate as ‘Very Likely.’ Similarly, the 
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measure of acceptable damage to critical infrastructure may be more restrictive than to that 

of more ordinary materials; evaluation of the two against the same scale or criteria, even 

when sharing a common metric (say, in monetary terms), is likely inappropriate. The 

natural language descriptions of risks, probabilities, and consequences often convey more 

information than ascription of a single numeric value. Conversely, the imprecision of 

language is simultaneously problematic even considering context; for instance, it is a 

rhetorical exercise to ask how ‘Major’ and ‘Moderate’ consequences are distinguished. 

While the JRAM is cognizant of the susceptibility to fallacy, it offers only 

acknowledgement in consolation, not resolution. 

Table 1. JRA Probability, Consequence, and Risk Levels. 
Source: Author’s elaboration from Joint Risk Analysis, B-2, B-3, B-5, C-10. 

 

 The JRAM’s Risk Assessment activity attempts to establish the causal linkages 

between the sources of risk, their drivers, and the occurrence of the harmful event. A 

distinction is first made between threat and hazard sources; the former is an entity that 

actively intends harm, the latter is comprised of the passive potential of some condition to 

result in harm. Risk drivers are defined to be any factor that alters the risk expectation 

through manipulation of probability or consequence. The examined considerations may 

include the object, event, or idea of interest’s vulnerability to harm, its resilience from 



www.manaraa.com

15 

harm, its importance, accessibility or exposure to the threat or hazard, as well as analysis 

of the higher-order effects of its damage or loss. The Risk Judgment activity then calculates 

the individual threat and hazard risk level as a function of that threat’s estimated probability 

and consequence, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓(𝑃𝑃,𝐶𝐶). The JRAM does not, however, go on to define this 

functional relationship further, notably refraining from their commonly recognized 

multiplicative interaction. As a result, the visual representation of risk level is indicated on 

an ostensibly ambiguous, but intentionally continuous, contour graph; again, this is an 

apparent departure from the near-ubiquitous use of the ‘risk matrix’ in inter-Service 

literature. In this sense, Figure 2’s “Risk Contour Graph” is used an aid for subject matter 

experts and decision-makers in the subjective assignment of risk level utilizing any 

previously calculated values as bounds or approximations. 

 

Figure 2. Risk Contour Graph. 
Source: Author’s elaboration from Joint Risk Analysis, B-5. 
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The actual risk judgment is one of acceptability; an intolerable risk level either 

warrants additional constraints or the application of limited resources to mitigate the 

threat’s probability or consequence. Risk Management addresses this concern through any 

of four techniques: 

- Acceptance; an informed decision to act without mitigation, 

- Avoidance; the risky activity is abandoned altogether, 

- Reduction; mitigation strategies are employed to lower the risk, 

- Risk Transfer; shifting where, when, and to whom the risk is incurred. 

 
 Regarding Risk Communication, the JRA importantly acknowledges that any 

methodology must be conjoined with sound military judgment in addressing operational 

risk; while the JRAM attempts to establish a common system that facilitates collective risk 

communication, alternative frameworks should be utilized when situationally appropriate. 

Regardless of the model employed, effective communication is paramount; the language 

of risk should be easily understood across domains and organizations. Without specificity 

or context, the statement that a given scenario is “High” risk, for example, may breed 

confusion and ultimately result in a suboptimal risk decision. Instead, productive risk 

dialogue is contingent on tangible articulation in terms of “actual costs, options, impacts, 

and end-states” (JRA, A-4). 

 The JRA also distinguishes Strategic Risk, which is focused on impact to national 

interests, from Military Risk, which is concerned with threat to the Joint Force (Risk-to-

Force) and the ability to accomplish military objectives (Risk-to-Mission). While the force 

management and institutional risks of Risk-to-Force are beyond the scope of this thesis, 



www.manaraa.com

17 

Risk-to-Mission contains the subsets of Operational Risk (OR) and Future Challenges 

Risk. Of interest to this paper, OR may be defined as a function of the probability and 

consequence of the current force’s failure to accomplish “current, planned, and 

contingency operations in the near-term (0-2 years) … within acceptable human, material, 

and financial costs” (JRA, C-8). Formally, Operational Risk is assessed in light of the 

military objectives called for under the current National Military Strategy (NMS); the 

principal sources for evaluation of OR are Campaign Plans, Crisis Response Execution 

Orders (EXORDs), Guidance for Employment of the Force (GEF) objectives, and Global 

Force Management (GFM) directives. Again, while the JRAM is specifically constructed 

for risk evaluation at a strategic level, and Operational Risk correspondingly defined, it is 

not incorrect to consider OR, in broad terms, as assessing the ability of any echelon, at any 

level of warfare, to accomplish a currently assigned military objective at acceptable cost. 

This paper subscribes to such a definition; the proposed methodology for evaluating 

military operational risk is, like the JRAM, a general framework structured within the Joint 

Planning Process but applicable across the entire spectrum of joint activities. It is notable 

that the military definition of operational risk considers only the ability to meet operational 

objectives, not the endogenous force management and institutional risks that ostensibly 

correspond to concerns of organizational effectiveness in the definition’s civil counterpart. 

 Another important distinction must also be made between military operational risk, 

environmental safety and occupational health (ESOH) risk, and technical risk, the latter of 

which is employed here as an umbrella term to describe the programmatic risk encountered 

in defense acquisition, lifecycle management, and information technologies. While each of 
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these diverse activities is subject to distinct regulatory guidance, it is necessary to highlight 

a technical risk document whose contents regularly surface not only in DoD operational 

risk literature, but are also recognized in a variety of governmental, commercial, and 

international publications. The Department of Defense Standard Practice: System Safety 

(MIL-STD-882E, 2012) institutes a Systems Engineering approach for the risk 

management of systems, equipment, and infrastructure from inception to grave. Governing 

risks in a more controlled environment, System Safety provides numerical examples of 

probability and severity criteria that are considerably less vague than those in the JRAM. 

The probabilities listed in Table 2, while appropriate for engineering applications, are 

defined over so tight a range as to have no practical utility in an operational sense. The 

same is potentially true of the dollar value or descriptive categorizations. 

Table 2. System Safety Probability, Severity, and Risk Levels. 
Source: Author’s elaboration from System Safety (MIL-STD-882E, 11, 12, 91). 

 

 System Safety is also, however, cautious in suggesting any fixed figures for 

categorical assignment and, while giving preference to quantitative data, ultimately 

demands compliance with the qualitative descriptions in the absence of frequency or rate 

data (MIL-STD-882E, 12). Several additional observations may be made from Table 2 that 

distinguish it from the JRAM. First, it prescribes six probability categories (the category 
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for ‘Eliminated’ is not shown) and only four for Severity and Risk Level. Second, risk is 

an expectation; it is the product of probability and severity. Lastly, the actual language used 

in defining the categories is different and those linguistic categories do not retain the same 

meaning from those in the JRAM. This is particularly true as the transformation from 

probability and severity to risk level is defined by a discretely categorized risk matrix (with 

compulsory compliance), as opposed to the continuous categorization of the JRAM’s risk 

contour graph. Without understanding these important distinctions, the errant application 

of this technical risk document by maneuver forces in operational planning is both faulty 

and dangerous. 
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2.2.2 Risk in the Uniformed Services 

Perhaps tellingly, the conceptual interpretation of risk within the DoD’s component 

Uniformed Service literature is presented in a manner more closely resembling that of 

System Safety than of Joint Risk Analysis. The Service policies respecting operational risk 

are contained in Army Techniques Publication 5-19: Risk Management (2014), Marine 

Corps Order 3500.27C: Risk Management (2014), Chief of Naval Operations Instruction 

3500.39C: Operations Risk Management (2010), and Air Force Instruction 90-802: Risk 

Management (2017). Largely homogenous in content, these documents borrow from each 

other extensively to the point of using the exact language of several key doctrinal features. 

The literature almost2 universally acknowledges four foundational risk management (RM) 

principles: 

- Integrate RM into all Phases of Missions and Operations, 
 

- Make Risk Decisions at the Appropriate Level, 
 

- Accept no Unnecessary Risk, 
 

- Apply RM Cyclically and Continuously. 
 

There also exists a generally accepted formulation for the actual systematic procedure of 

risk management as a cyclical and continuous five-step process, fundamentally 

corresponding to that of the JRAM: 

- Identify the Hazards, 
 

- Assess the Hazards, 
 

- Develop Controls and Make Risk Decisions, 
                                                 
2 The Navy consolidates the “Integrate…” and “Apply…” principles into a single bullet and adds the 
additional principle of “Accept Risk when Benefits outweigh the Cost” (OPNAVINST 3500.39C, 2). 
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- Implement Controls, 
 
- Supervise and Evaluate. 
 

While these similarities ostensibly suggest consistency in the body of Service 

literature, while still disparate from the Joint publication, there are notable inconsistencies 

in the precise taxonomies and methodological frameworks within the first two steps: 

Identification and Assessment of hazards. Together, these two elements of RM are 

considered semantically equivalent to the component of Risk Appraisal within the context 

of the JRAM; again, the JRAM’s articulation of risk level is made through use of the 

contour graph.  

 

Figure 3. Navy Risk Assessment Matrix. 
Source: ORM (OPNAVINST 3500.39C), 10. 

Herein lies an important distinction; not only do the various Service frameworks 

employ risk matrices as the primary instrument for the contextualization and translation of 

hazards to resultant risk levels (as opposed to use of the risk contour), but the Service 

representations of the risk matrix are dissimilar. For example, Figure 3 depicts the “Basic 
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Risk Assessment Matrix” as described by the Navy. Meanwhile, the standard risk matrices 

suggested by the other Services may use contrasting linguistic terms for categorical 

discrimination, or, even more noticeable, use a different number of probability, severity, 

and risk level categories altogether. The result is that the topology of the risk matrix is 

unique to the particular Service; that is, implying that the functional relationship existing 

between probability and severity is also unique to the particular Service. Consider Figure 

4, the Air Force’s “Sample Risk Assessment Matrix.” 

 

Figure 4. Air Force Risk Assessment Matrix. 
Source: RM Guidelines and Tools (AFPAM 90-803, 26). 

 The obvious differences between Figure 3 and Figure 4 are the Air Force’s addition 

of an additional probability category, the removal of a risk assessment level, application of 

naming conventions to the severity categories, and, most significantly, a wholesale 

restructuring of the mapping’s translational associations from the Navy’s symmetrical-

about-the-diagonal matrix (which is not necessarily more ‘right’). Were isocontour lines to 

be superimposed over the two figures, it is clear that they would not correspond. In the 

latter instance, the implication of the isocontour shape is that the Air Force considers an 
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increase in event probability to yield a lower risk than an equivalent increase in event 

severity. While such a statement may be appropriate in contextually specific scenarios, it 

is meritless in a general sense, and even particularly dangerous without specification of the 

numerical ranges under consideration (dangerous in that blind application of the format 

may result in harmful risk decisions). Furthermore, the language employed between the 

two risk matrices is not uniform and renders incommensurable any linguistic comparison. 

For instance, the Navy’s highest probability is termed “Likely,” while the same term is 

used for the second highest probability category in the Air Force’s matrix. More concerning 

is the Navy’s use of “Critical” as the highest risk level; the Air Force labels the second 

highest severity category with this word. In the realm of operational risk, where descriptive 

and qualitative measures are favored for their ability to deal in imprecision, it is evident 

that the imprecision of language has the potential to convolute inter-Service risk 

communication. 

Finally, it is important to note that neither of the discussed risk matrices are 

incontestably prescriptive. The Air Force cautions that the presented risk matrix is merely 

an example and states that “risk assessment matrices can take different forms and should 

be designed to fit the organization and/or situation as warranted” (AFPAM 90-803, 26). In 

a similar vein, the Army’s publication concedes that 

“…while mathematics and analytical tools are helpful, Soldiers always 
need to apply sound judgment. Technical competency, operational 
experience, and lessons learned weigh higher than any set of alphanumeric 
codes.” 

- Risk Management 
ATP 5-19 (2014, 1-14) 
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2.3 The Problem with Risk Matrices 

 One, if not the singularly foremost, reason for the adoption of risk matrices in the 

management of risk is in its simplicity of use, a simplicity that enables its non-technical 

employment while simultaneously giving the appearance of the same mathematical rigor 

and validity intrinsic to strict quantitative methods. Regrettably, the same simplicity belies 

a treacherous truth; as a qualitative method, risk matrices enjoy, at best, a tenuous purchase 

on their mathematical underpinnings. It must first be understood that most risk matrices 

assume a multiplicative relationship within the severity and consequence doublet; this 

multiplication is, more properly, the formula for expected risk. Mathematical expectation 

captures two desirable properties that make it a meaningful function in the context of risk. 

First, it trivializes resultant risk when either of the two contributing factors possess a null 

value. Second, it is monotonic; multiplication results in strictly non-decreasing risk 

outcomes over any range of nonnegative real severities and consequences. However, the 

use of expectation as the sole criterion in risk decision-making invites fallacy; the 

“operation literally commensurates adverse events of high consequences and low 

probabilities with… events of low consequences and high probabilities” (Haimes, 230). Of 

course, in light of Taleb’s Black Swan (2007), it is understood that decision-makers are 

more often concerned with catastrophic extremes of the former than the humdrum of the 

latter.  

 Risk matrices, as qualitative endeavors, also suffer from an inability to satisfy the 

assumptions necessary for axiomatic application. Their use of expectation assumes they 

uphold monotonicity; instead of quantitative values, the qualitative risk rankings are 
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assumed to be both non-decreasing and ordinal. Second, it is assumed that their inferential 

judgments are sound; quantitatively higher risks should be assigned qualitatively higher 

risk rankings. However, Cox, Babayev, & Huber (2005) theorize that no “direct qualitative 

rating system satisfying monotonicity is sound for arbitrary quantitative risk functions,” to 

include the multiplicative case (654). To illustrate this point, consider the basic risk matrix 

shown in Figure 5 and the three circles (cyan, 1; pink, 2; blue, 3; and brown, 4) representing 

singleton valued quantitative risk expectations calculated as the product of probability and 

severity. Suppose that severity is scaled over a broad range and that probability is narrowly 

defined. In such a scenario, it is possible to identify quantitative values of (blue, 3) that 

exceed that of (cyan, 1), despite the latter assignment of a qualitative ‘High’ to the former’s 

‘Medium.’ 

 

Figure 5. Common Fallacies of Risk Matrices. 
Source: Author’s elaboration based on the concepts of Cox (2008). 

 This phenomena of rank reversal is demonstrated with the following numerical 

example. Let probability be defined from 0% to 3%, uniformly distributed, and let severity 

be defined from $0 to $3M, uniformly distributed, then 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐, 1) =  0.021 × $1,000,001 = $21,000.02, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃𝑏𝑏𝑆𝑆, 3) = 0.019 × $2,999,999 = $56,999.98, 

(1) 
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and therefore (blue, 3) clearly is higher quantitatively than (cyan, 1), but is assigned a lower 

qualitative rank. A second phenomena is that of range compression, in which the poor 

resolution provided by the few number of categorical rankings permits assignment of 

identical qualitative rankings to quantitatively disparate risks. In this manner, Figure 5 fails 

to distinguish between (pink, 2) and (brown, 4); assuming that (brown, 4)’s probability is 

asymptotically zero, however, renders (pink, 2)’s quantitative risk orders of magnitude 

larger, despite having the same ranking. The result is uninformative categorization and 

inadequate risk management decisions wherein resources cannot be optimally apportioned 

according to ordinal ranking (Cox [2], 497). 

A third and final phenomena is that risk matrices are error prone due to discretely 

delineated categorical boundaries. In short, the true cardinality of quantitative evaluations 

are obscured for the sake of qualitative ordinality. Regardless of how proximal an 

expectation is to the nearest boundary, it is assigned exclusive categorization in only one 

ranking. In Figure 5, assuming that (cyan, 1) is firmly planted in the lower-left corner of 

its quadrant and that (pink, 2) is in the upper-right corner of its own, then the distance 

between the two expectations may be infinitesimal so long as it is crosses the boundary. 

While such an occurrence is problematic in the case of a single category, this example 

bypasses a category altogether, effectively jumping from ‘Low’ to ‘High.’ The failure of 

the risk matrix to approximate continuous functions is therefore a failure to generalize by 

induction; uniformly small perturbations potentially produce heterogeneous responses.3 

                                                 
3 This is contradictory to eighteenth-century empiricist David Hume’s proposition “that other objects, 
which are, in appearance, similar, will be attended with similar effects.” 
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The famous pipe. How people reproached me for it! And yet, could you stuff 
my pipe? No, it's just a representation, is it not? So if I had written on my 
picture 'This is a pipe', I'd have been lying!4 

 
- René Magritte 

             La Trahison des Images (1929) 

2.4 Fuzzy Set Theory 

Fuzzy logic posits a multivalued set theory, as distinct from classical set theory, 

that disallows a worldview of unambiguously discrete categorization in favor of one that 

permits belonging to a particular category as a degree of truth; in other words, suggesting 

that an object or event may satisfy the conditions of set membership only in part, rather 

than fully or not at all. Even more concisely, that a set and its complement are not mutually 

exclusive. Whereas games of chance have definitively distinguishable outcomes and, 

correspondingly, clear and precise rules for winning and losing, real world problems are 

inherently noisy, uncertain, and imprecise (certainly there are no such clearly delineated 

win conditions in modern asymmetrically-waged “grey zone” conflicts). In this regard, 

“classical probability theory assumes an accuracy and precision of categorization” that is 

wholly appropriate for predicting the results of coin flips and dice rolls, but potentially 

inadequate for the modeling of many important problems (Kosko, xxii). 

                                                 
4 Torczyner, Harry. (1977). Magritte: Ideas and Images. New York: H.N. Abrams, 71. 
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Figure 6 illustrates the fundamental distinction between classical sets and fuzzy 

sets. In the former (on the left), Magritte’s famous pipe is either most certainly a pipe, or it 

is most certainly not. The boundaries of the crisp “This is a pipe” set are unambiguously 

defined; accordingly, an element, being either a pipe or not, is designated with the binary 

truth value of zero (for full exclusion) or unity (for full membership), and is consequently 

assigned membership constrained to the exhaustive set of {0,1} (Pedrycz, 4). Meanwhile, 

fuzzy sets (on the right of Figure 6) may give consideration to the somewhat paradoxical 

nature of Magritte’s pipe; as a representation of a real pipe it possesses features thereof, 

and is therefore simultaneously both a pipe and not a pipe (and a member, to a degree, of 

both sets). While such a statement is inconsistent within classical set theory, the ambiguous 

boundaries of the fuzzy “This is a pipe” set allow Magritte’s pipe ascription of a value in 

the interval [0,1], reflecting the degree to which it said to belong (Reveiz, 8). 

 

Figure 6. A Bivalent “Crisp” Set and a Multivalued “Fuzzy” Set. 
Source: Author’s elaboration based on Radionovs (2014). 

 

Fuzzy logic also more closely resembles human logic than does classical 

probability theory; the techniques used to investigate fuzzy sets are as concerned with 

human psychology as they are mathematical formulations. In fact, fuzzy variables are often 
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linguistic in nature; their values being words, not numbers. Fuzziness itself is largely a 

product of the imprecision of natural language and the distillation of mental abstraction 

into verbal representation. A commonly used example to demonstrate this point is that of 

rain, wherein “there are continuous gradations between overlapping linguistic categories: 

dense fog, drizzle, light rain, heavy rain, and downpour.” Whether it is raining or not, in 

absolute terms, is an “extreme approximation” which implies that classical set theory is a 

special case of fuzzy sets (Kosko, xxii). 

In the sense that natural language allows for “a little” or “a lot” of rain, the fuzziness 

of an event describes its ambiguity, or the degree to which it occurs. This is distinct from 

the randomness derived from an event’s uncertainty of occurrence (it occurs or not) and 

answers the question of whether it is possible to “unambiguously distinguish the event from 

its opposite” (Kosko, 264). To this end, classical set theory inflexibly requires that the 

intersection of a set and its absolute complement is equal to the empty set. Bertrand 

Russell’s The Problems of Philosophy (1912, 113) summarized this second of Aristotle’s 

three traditional laws of thought, the “law of non-contradiction,” by stating that “nothing 

can both be and not be.”5 Given the set 𝐴𝐴 and its contradictory complement 𝐴𝐴𝑐𝑐, 

 𝐴𝐴 ∩ 𝐴𝐴𝑐𝑐 = ∅, (2) 

which represents the probabilistically impossible event 

 𝑃𝑃(𝐴𝐴 ∩ 𝐴𝐴𝑐𝑐) = 𝑃𝑃(∅) = 0. (3) 

                                                 
5 The first of the “laws of thought” is the law of identity, or 𝐴𝐴 = 𝐴𝐴. Bertrand Russell (1912) describes this as 
“whatever is, is.” The identity principle is not addressed in this text, except, perhaps, insofar as the extension 
of de Morgan’s laws to show the involutive nature of a set’s complement; (𝐴𝐴𝑐𝑐)𝑐𝑐 = 𝐴𝐴. For Russell’s 
mathematical representations, see Whitehead, A. N. & Russell, B. (1910). Principa Mathematica. 
Cambridge: University Press.  
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However, as demonstrated by Magritte’s pipe in the discussion of Figure 6, “fuzziness 

begins when 𝐴𝐴 ∩ 𝐴𝐴𝑐𝑐 ≠ ∅.” That is to say that set fuzziness only exists where the law of 

non-contradiction is violated (shown in Figure 7, this is the failure of the intersection of 𝐴𝐴 

and 𝐴𝐴𝑐𝑐 to produce the empty set; a phenomena sometimes referred to as overlap). The third 

of the laws of thought is called the “law of excluded middle” and is defined as  

 𝐴𝐴 ∪ 𝐴𝐴𝑐𝑐 = 𝑿𝑿, (4) 

which represents the probabilistically definite event 

 𝑃𝑃(𝐴𝐴 ∪ 𝐴𝐴𝑐𝑐) = 𝑃𝑃(𝑿𝑿) = 1, (5) 

wherein X denotes the sample space (or, in fuzzy logic, the “universe of discourse”). 

Bertrand Russell (1912) defines this as “everything must either be or not be.” 

 

Figure 7. Elasticity and the Laws of Non-Contradiction and Excluded Middle. 
 

The very measure of a set’s fuzziness is determined by the extent to which the union 

of a set and its complement, 𝐴𝐴 ∪ 𝐴𝐴𝑐𝑐, “is a subset of its own subset 𝐴𝐴 ∩ 𝐴𝐴𝑐𝑐” (Kosko, 265). 

To clarify this point, fuzziness can be measured by the proportion of the union of 

complementary sets occupied by their intersection, which is depicted in Figure 7 and 

correspondingly represented by the “fuzzy” boundary illustrated in Figure 9. This is 
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decidedly distinct from the proportion of the universe of discourse occupied by the 

intersection of complementary sets; fuzzy logic does not demand that the degrees of truth 

across all sets sum to unity for a specific object, effectively permitting violation of the law 

of excluded middle (represented in Figure 7 as the failure of the union of 𝐴𝐴 and 𝐴𝐴𝑐𝑐 to 

produce the universe, referred to as underlap). Fuzziness, then, occurs only when the laws 

of non-contradiction and excluded middle are unsatisfied as a result of “operation with 

membership values between 0 and 1,” instead of exclusively 0 and 1, which is an otherwise 

paradoxical impossibility in classical set theory (Pedrycz, 38). It is, however, and while 

beyond the scope of this thesis, necessary to exercise caution as to not conflate fuzzy logic 

with contradiction-tolerant paraconsistent logics; while seemingly dialetheic, most fuzzy 

logics maintain truth-preservation in defining logical consequence as a matter of set 

ambiguity and are susceptible to deductive explosion; in practice, however, the evaluation 

of contradictory concepts is conducted with overlapping but distinct truth-retaining sets 

that negates this concern for approximate reasoning with vague information (Coniglio et 

al., 883).6 

With respect to the matter of set ambiguity, Figure 7 also provides a visual 

illustration of elasticity; a concept that captures the essence of fuzziness as a matter of 

degree of truth. If one were to imagine the boundary containing set A as a rubber band, 

with the crisp depiction being that of the rubber band at rest, then the “slightly” and “very” 

fuzzy sets would represent forces applied to stretch the rubber band to their respective 

degrees. In this analogy, the amount of force required to sufficiently distort the rubber band 

                                                 
6 The principle of explosion suggests that any asserted contradiction permits the logical inference of any 
given proposition. The subsequent cascade of inconsistencies trivializes the notion of truth. 
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(set 𝐴𝐴) as to contain an arbitrary element (𝑥𝑥) initially existing outside of the space so 

encircled (set 𝐴𝐴𝑐𝑐), is inversely proportional to the element’s degree of membership to, or 

conceptual compatibility with, set 𝐴𝐴. In this regard, propositions in classical logic are 

inelastic; given the proposition that “𝑥𝑥 belongs to 𝐴𝐴,” the element 𝑥𝑥 must satisfy the 

argument’s predicate “belongs to 𝐴𝐴” in entirety, necessarily being perfectly classified as 

either true or false. Figure 7’s latter two depictions may be thought of as instances where 

the predicate is satisfied, but only in part; for instance, in the case of “slight” fuzziness, an 

element 𝑥𝑥 requiring the corresponding degree of “slight” elastic stretch for inclusion, might 

be considered to “mostly belong to 𝐴𝐴.” These linguistic, imprecise, and vague predicates 

“appear very often in normal discourse, because they are very informative; common sense 

reasoning is elastic” (Trillas, 576). 
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2.4.1 Fuzzy Set Membership 

 Lotfi Zadeh (1965, 338) defines fuzzy sets as “a class of objects with a continuum 

of grades of membership.” So defined, the fuzzy set (class) 𝐴𝐴, as a subset of the universe 

of discourse 𝑿𝑿 (whose variable 𝑥𝑥 is a numerical value associated with the discourse of 

interest), possesses the characteristic function (herein called a membership function) 𝜇𝜇𝐴𝐴(𝑥𝑥) 

which relates, and is a mapping of, all values of 𝑥𝑥 ∈ X to a real number in the interval [0,1]. 

The value of 𝜇𝜇𝐴𝐴(𝑥𝑥) at 𝑥𝑥 is the “grade of membership,” or degree of truth, of 𝑥𝑥 belonging 

to set 𝐴𝐴 (Shapiro, 10).  

 

Figure 8. Crisp Set of Objects that are Pipes. 
Source: Author’s elaboration based on Shapiro (2015). 

 
 

Figure 8 and Figure 9 depict two membership functions, 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥), representing 

both the crisp and fuzzy cases of the set “This is a pipe” which is defined by the 

psychometric scale measuring percentage in similarity of an object to a prototypical 

smoking pipe (alternatively, compatibility with the ideological concept of the pipe) (Cox, 

91). In the figures, any object compared to the ideal pipe is assigned, through its respective 

membership function, a degree of truth in the interval [0,1]. The crisp boundary illustrated 

in Figure 8 is defined by a discrete function (a degenerate univariate) in which there is an 

unambiguous discontinuity that “jumps” at the defined threshold of 60%, prior to which 
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the object is definitively not a pipe, and after which it is; accordingly, the membership 

values are constrained to the set {0,1}. 

 

Figure 9. Fuzzy Set of Objects that are Pipes. 
Source: Author’s elaboration based on Shapiro (2015). 

 
 

Particular to the fuzzy example in Figure 9, any objects determined to have a 

similarity of 70% or greater are assigned a degree of truth value of 1. Likewise, any objects 

possessing a similarity of 50% or less are assigned a degree of truth value of 0. It should 

be noted that these two values, 0 and 1, respectively imply either no or full membership in 

the “This is a pipe” set. This is equivalent to membership in the crisp classical set (as there 

exists no ambiguity in belonging). The ambiguity lies the boundary region between the 

similarity percentages of 50% and 70%; the membership function is an appropriately 

continuous piecewise linear “s,” and constitutes a fuzzy set. For instance, it is trivial to 

observe, given the uniformly increasing membership function across the fuzzy range, that 

𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(60) = 0.5. In linguistic terms, this is the case where an object possessing 60% 

similarity to the ideal pipe is assigned a degree of truth classification, or membership value, 

of 0.5. 

 While Figure 9 depicts the fuzziness internal to a single fuzzy set, it is often 

necessary to represent multiple fuzzy sets on the same universe of discourse in order to 
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illustrate the ambiguity that exists between adjacent sets. Figure 10 portrays the fuzzy sets 

associated with “light,” “moderate,” and “heavy” intensities of precipitation in millimeters 

per hour as uniquely defined by the American Meteorological Society (AMS) and the 

Royal Meteorological Society (RMetS) according to their shared linguistic categorizations 

but divergent numerical descriptions.  

 

Figure 10. Fuzzy Sets of Rainfall Rates. 

 
In instances where the two organizations agree without question as to what should 

be included in a particular fuzzy set, the corresponding range of that numerically crisp 

rainfall rate is assigned a truth value of 1 (equivalently 0 when there exists no disagreement 

as to what should not be included). Nevertheless, the overlapping boundary regions are 
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indicative of fuzziness resulting from inconsistent or contradictory definitions. One could 

readily speculate that the opposing characterizations of the same phenomena is due to a 

legitimate scientific disagreement in the meteorological community, that there exists a 

contributory statistical difference in observed North American and European rainfall rates, 

or that variance is inherent in the measurement of natural occurrences. It is, however, a 

genuine consideration that the RMetS model is granularized over and above that of the 

AMS’; the categories, though identically named, are therefore compressed relative to their 

American cousins. Although ostensibly a straightforward instantiation of fuzzy sets, this 

discussion illustrates many of the real-world drivers of ambiguity, particularly when 

linguistic categories are defined by expert opinion (or cross-organizationally). 

 A close examination of Figure 10’s membership functions is also warranted. 

Certainly, given the context and available information, the trapezoidal is a credible 

candidate function (since the extreme minimum and maximum values are both well-

defined and contain the unity membership in entirety). The shapes of the overlapping 

membership functions, and in particular the negative reciprocal slopes constituting the 

fuzzy boundary regions, suggest that for a given crisp input 𝑥𝑥, the truth value for one set is 

seemingly complimentary to that of its adjacent set. This is not universally true; truth 

degrees are not obligated to sum to unity, allowing non-complementary slopes that generate 

underlap. 

 It is also necessary, especially when dealing with mathematical operations on 

linguistic variables, to consider some other characteristics of fuzzy sets. It is first important 

to distinguish that a universe of discourse 𝑿𝑿 is associated with the linguistic variable 𝑥𝑥 
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whose range defines the problem space which is subsequently decomposed into the 

individual overlapping fuzzy sets, each named with apparently self-descriptive 

terminologies appropriate to the variable’s internal semantics. This taxonomy, as well as 

the fuzzy sets the terms represent, are collectively referred to as the term set, and are 

directly used in the logical construct of the ruleset by which some fuzzy models operate 

(Cox, 89). Figure 11 portrays several additional concepts used in describing such linguistic 

models. The support of fuzzy set 𝐴𝐴 consists of all elements of 𝑿𝑿 with a nonzero degree of 

truth, 

 𝑆𝑆𝑏𝑏𝑆𝑆𝑆𝑆(𝐴𝐴) = {𝑥𝑥 ∈ 𝑿𝑿|𝜇𝜇𝐴𝐴(𝑥𝑥) > 0}. (6) 

The core of fuzzy set A consists of all elements of 𝑿𝑿 that attain a membership degree of 

unity (accordingly, the core is inherently a subset of the support), 

 𝐶𝐶𝑃𝑃𝑃𝑃𝑆𝑆(𝐴𝐴) = {𝑥𝑥 ∈ 𝑿𝑿|𝜇𝜇𝐴𝐴(𝑥𝑥) = 1}. (7) 

Finally, an 𝛼𝛼-cut of fuzzy set 𝐴𝐴, or 𝐴𝐴𝛼𝛼, consists of all elements of 𝑿𝑿 that attain a minimum 

membership degree exceeding the specified threshold 𝛼𝛼, 

 𝐴𝐴𝛼𝛼 = {𝑥𝑥 ∈ 𝑿𝑿|𝜇𝜇𝐴𝐴(𝑥𝑥) ≥ 𝛼𝛼}. (8) 

It is therefore evident that the support of 𝐴𝐴 is equivalent to evaluating the 𝛼𝛼-cut at 0 and 

the core of 𝐴𝐴 is defined where 𝛼𝛼 = 1 (Pedrycz, 14). Forcibly increasing the value of the 𝛼𝛼 

raises the threshold for set admittance, effectively determining a truth value at or below 

which membership should be considered zero for that particular application (Cox, 95). 
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Figure 11. Support and 𝜶𝜶-Cuts. 
Source: Author’s elaboration based on Pedrycz (17). 

 

 Two 𝛼𝛼-cuts are considered in Figure 11, 𝛼𝛼1 and 𝛼𝛼2. Since more elements are 

admitted to 𝛼𝛼-cuts with lower 𝛼𝛼 levels, it is the case that 𝛼𝛼1 is a subset of 𝛼𝛼2, or 

 𝑅𝑅𝑓𝑓 𝛼𝛼1 > 𝛼𝛼2 𝑃𝑃ℎ𝑆𝑆𝑐𝑐 𝐴𝐴𝛼𝛼1 ⊂  𝐴𝐴𝛼𝛼2. (9) 

In this way, “any fuzzy set can be regarded as a family of fuzzy sets” wherein a fuzzy set 

can be constructed “from a family of nested sets (assuming that they satisfy the [above 

stated] constraint of consistency)” (Pedrycz, 17). In what is called the “representation 

theorem,” any fuzzy set may therefore be decomposed into a family of subsumed 𝛼𝛼-cuts, 

𝐴𝐴 = � (𝛼𝛼𝐴𝐴𝛼𝛼)
𝛼𝛼∈[0,1]

 𝑃𝑃𝑃𝑃 𝜇𝜇𝐴𝐴         or, equivalently, 𝜇𝜇𝐴𝐴(𝑥𝑥) = 𝑅𝑅𝑏𝑏𝑆𝑆
𝛼𝛼∈[0,1]

�𝛼𝛼𝐴𝐴𝛼𝛼(𝑥𝑥)�, 

where “𝑅𝑅𝑏𝑏𝑆𝑆” is the set’s supremum at the given 𝛼𝛼 level. The importance of the 

representation theorem manifests in the implementation of fuzzy rules, the governance of 

interactions between multiple fuzzy sets, and its allowance of traditional mathematical 

techniques on fuzzy problem formulations. In effect, it permits the reconstruction of a set 
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via the merger of its partial evaluations; this concept is fundamental to the aggregation of 

consequent fuzzy sets in inference systems, which will be introduced in Chapter III. 

2.4.2 Membership Function Determination  

 In the discussion of the constituent membership functions depicting the several 

categorizations of rainfall in Figure 10, it is suggested that a trapezoidal shape is intuitively 

appropriate given the specific context of the problem as well as the limited information 

available (namely the categorical boundaries as presented by the two organizations, 

weighed equally). While the piecewise linear trapezoidal and its special case, the triangular 

membership function, are frequently used in the literature due to their simplicity in 

parameter estimation and low computational complexity, there are several other commonly 

encountered parametric functions. Among these standard parametric distributions are those 

illustrated in Figure 12. However, fuzzy membership functions may in fact take on any 

form that satisfies the mapping of the concerned concept, for input values over the specified 

universe of discourse, to output values between and including 0 and 1 (Pedrycz, 8); for 

fuzzy set 𝐴𝐴, 

 𝐴𝐴:𝑿𝑿 → [0,1]. (10) 

In this sense, there exist no hard rules for the creation of membership functions, nor 

are there any “universal or pre-defined fuzzy sets;” the actual contours of a fuzzy set are 

entirely and exclusively representative of the semantic properties of the conceptual 

phenomenon in light of the model’s context and outside of which the “fuzzy set has no 

meaning” (Cox, 100).  A function’s mathematical form and parameters, and consequently 

the latent knowledge it encodes, are subject to the intuition, experience, and information 
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possessed by the formulator and their consulted decision-makers or subject matter experts. 

While nearly any shape is permissible, selection of membership functions should not be 

made arbitrarily; good models closely mimic real-world behaviors and the various classes 

of parametric distributions are often employed as adequate representations for particular 

classes of knowledge. Nevertheless, it is widely accepted that the “exact semantics 

captured by fuzzy sets is not too sensitive to variations in the shape” and are “tolerant of 

approximations” in both definition of the problem space and set representation (Pedrycz, 

9; Cox, 100). While more complex functions, or their joint use, may better represent 

membership in real-world sets and possess higher information content and fidelity, the 

insensitivity of fuzzy models makes them quite robust to selection of membership function. 
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Figure 12. Common Membership Functions. 

The parameterized functions presented in Figure 12 are generally representative of 

two encompassing types of fuzzy sets, fuzzy numbers and fuzzy qualifiers. In each depiction 

and for all nonnegative values of membership, the parameter 𝑚𝑚 is the modal value, 𝑃𝑃 is the 

lower bound, and 𝑃𝑃 is the upper bound. Triangular and bell-shaped curves, akin to Figure 

12’s triangular and Gaussian functions, are often used to represent the quantitative 
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approximation of a specific numeric value (any similarly convex distributions like some 

exponential, hyperbolic, or normal functions, among others, are contextually viable). 

Again in Figure 12, only the single-point supremum of the triangular and Gaussian 

achieves a membership degree of 1, and can consequently be considered to depict the fuzzy 

set approximating the central value 𝑚𝑚. In what are sometimes called fuzzy numbers, the 

kurtosis (or, in the triangular case, spread) of such functions may be indicative of the degree 

to which the approximation is precise (whether the approximation is accurate is a different 

question entirely)7. While bell-shaped membership functions are favored for their concise 

notation, consistent smoothness, and for maintaining nonzero values across the universe of 

discourse (since they only asymptotically approach 0), triangular distributions are often 

satisfactory surrogates due to their low information and calculational demands, especially 

in light of the aforementioned insensitivity of fuzzy systems. Nevertheless, it is informative 

to consider the properties and typical behaviors modeled by common probability 

distributions when constructing fuzzy membership functions; Law (2007, 275) presents an 

extensive treatment on probability distribution functions for simulation input. 

It is also obvious when comparing Figure 12’s membership functions that the 

triangular is identical to the trapezoidal when 𝑚𝑚 and 𝑐𝑐 are coincident. Trapezoidal or 

platykurtic bell-shaped functions are often appropriate when representing classes of 

numbers or conceptual categorizations. Many of these functions are structured with a  

                                                 
7 Kurtosis is the fourth moment about the mean of a probability distribution and is reflective of its 
“tailedness.” Platykurtic distributions have thin tails and are generally described as “fat” or “flat-topped” and 
may therefore indicate a broader, but more uniform, approximation. Leptokurtic distributions have fat tails 
and descriptively have more “peakedness,” representing a narrower but more extreme approximation (Cox, 
521). 
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plateau designating full membership over a specified numeric interval. Conversely, fuzzy 

qualifiers are used to model concepts exhibiting asymmetric, dichotomous, or unbounded 

behaviors. The sigmoidal contour in Figure 12, or any comparable “S-curve,” polynomial, 

logistic, or strictly linear representation typically attains full membership at its open-ended 

side, whether left or right, and possess a zero degree of membership on the closed side. 

These upper- and lower-bound parameters, and importantly the inflection point 𝑚𝑚, are 

selected to reflect the suspected or known distribution of the population of interest, as well 

as its underlying characteristics (Cox, 112). Specifically, S-curves regularly correspond 

with the growth curves of continuous random variables and their cumulative distribution 

functions. In this regard, they are also suitable when dealing with event frequencies, time-

series, proportional dependencies, and imprecision in conditional qualifications; however, 

fuzzy propositions “involving ‘usuality’ terms lead to a class of ultra-fuzzy implications 

[in fuzzy reasoning]” (Cox, 114). 

2.4.3 Fuzzy Set Operations 

 In order to perform mathematical operations to combine, compare, or otherwise 

aggregate fuzzy sets, it is necessary to extend propositional logic from classical bivalence 

to one of multivalued logic. Having already established that classical sets are a special case 

(equivalently, a subset) of fuzzy sets in which truth values are anchored to the extremes of 

0 (absolute exclusion) and 1 (absolute inclusion), the basic logical connectives of 

conjunction (and), disjunction (or), and negation (not) are preserved under conditions of 

multivalence. Furthermore, because membership functions are “equivalent representations 

of sets,” the mathematical operators of intersection (∩), union (∪), and complement (𝐴𝐴𝑐𝑐), 
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which are in turn equivalent to the respective logical connectives, are correctly represented 

by evaluating the “minimum, maximum, and one-complement of the corresponding 

[membership] functions for all 𝑥𝑥 ∈ 𝑿𝑿:” 

 

(𝜇𝜇𝐴𝐴∩𝐵𝐵)(𝑥𝑥) = 𝑚𝑚𝑅𝑅𝑐𝑐�𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐵𝐵(𝑥𝑥)� = 𝜇𝜇𝐴𝐴(𝑥𝑥) ∧ 𝜇𝜇𝐵𝐵(𝑥𝑥), 

(𝜇𝜇𝐴𝐴∪𝐵𝐵)(𝑥𝑥) = 𝑚𝑚𝑃𝑃𝑥𝑥�𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐵𝐵(𝑥𝑥)� = 𝜇𝜇𝐴𝐴(𝑥𝑥) ∨ 𝜇𝜇𝐵𝐵(𝑥𝑥), 

𝜇𝜇𝐴𝐴𝑐𝑐 (𝑥𝑥) = 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥), 

(11) 

wherein A and B are defined sets in the universe of discourse 𝑿𝑿 and 𝜇𝜇𝐴𝐴∩𝐵𝐵 and 𝜇𝜇𝐴𝐴∪𝐵𝐵 are the 

membership functions resulting from A and B’s intersection and union, respectively 

(Pedrycz, 31). Use of the 𝑚𝑚𝑅𝑅𝑐𝑐 (∧), 𝑚𝑚𝑃𝑃𝑥𝑥 (∨), and additive complement (1 −) operators 

permit application of the logic to continuous sets; that is, they both satisfy preservation of 

the truth values according to bivalent logic while simultaneously allowing real numbers 

between 0 and 1 (Reveiz, 12). Utilizing the analogy and membership functions introduced 

in Figure 10, a comparison of bivalent logical operators and multivalent logical operators 

in assessing several propositional constructs is illustrated in Figure 13.  
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Figure 13. Logic Operators under Bi- and Multivalence. 
Source: Author’s elaboration based on Mathworks (2018). 

 

However, the min, max, and additive complement mathematical functions do not 

provide a singularly unique definition of the logical operations in both bivalent and 

multivalent logics; while most applications of fuzzy logic adopt these operations, they 

represent only a particular correspondence between the two systems of logic. In fact, the 
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specific operations used to define fuzzy conjunctions and disjunctions are “arbitrary to a 

surprising degree,” and many alternative functions have practical use (Mathworks, 1-21). 

In general, the intersection (logical conjunction) of two fuzzy sets 𝐴𝐴 and 𝐵𝐵 is specified by 

the binary algebraic operation 𝑇𝑇, or t-norm, used to aggregate their respective membership 

functions such that for all 𝑥𝑥 ∈ 𝑿𝑿, 

 (𝜇𝜇𝐴𝐴∩𝐵𝐵)(𝑥𝑥) = 𝑇𝑇�𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐵𝐵(𝑥𝑥)�, (12) 

which performs the binary mapping 

 𝑇𝑇: [0,1] × [0,1] → [0,1]. (13) 

The t-norm, or triangular norm, is adopted from probabilistic metric spaces which 

requires a generalization of the triangle inequality (in geometry, that the sum length of any 

two sides of a triangle must be greater than or equal to the length of the third) of ordinary 

metric spaces subjected to probability theory, such that distances are characterized by 

probability distributions (Menger, 536). In fuzzy set theory, triangular norms form the basis 

for mathematical operations on fuzzy sets, and must satisfy the following basic properties, 

including boundary conditions such that they behave correctly as a generalization of set 

operations on crisp sets (Pedrycz, 33): 

- Commutativity: 𝑇𝑇(𝑥𝑥,𝑃𝑃) = 𝑇𝑇(𝑃𝑃, 𝑥𝑥), 

- Associativity: 𝑇𝑇(𝑥𝑥,𝑇𝑇(𝑃𝑃, 𝑧𝑧)) = 𝑇𝑇(𝑇𝑇(𝑥𝑥,𝑃𝑃), 𝑧𝑧),  

- Monotonicity: 𝑅𝑅𝑓𝑓 𝑥𝑥 ≤ 𝑃𝑃 𝑃𝑃𝑐𝑐𝑎𝑎 𝑤𝑤 ≤ 𝑧𝑧, 𝑃𝑃ℎ𝑆𝑆𝑐𝑐 𝑇𝑇(𝑥𝑥,𝑤𝑤) ≤ 𝑇𝑇(𝑃𝑃, 𝑧𝑧), 

- Boundaries: 𝑇𝑇(0, 𝑥𝑥) = 0, 𝑇𝑇(𝑥𝑥, 1) = 𝑇𝑇(1, 𝑥𝑥) = 𝑥𝑥. 

As with logical conjunctions in classical bivalence, the commutative (indifference 

to order of membership function aggregation in conjunction) and associative properties 
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(indifference to order in pairwise conjunction of any number of membership functions) 

hold in multivalence. Likewise, monotonicity dictates, for example, that an increase in the 

truth or membership values of conjuncts is prohibitive of a decrease in the truth or 

membership value of the corresponding conjunction. Lastly, in the case of boundary 

conditions, inclusion of the identity element (1) implies the constraining extremes of 

multivalence; a truth or membership value in the bivalent set {0,1} represents false and true 

assessments, respectively. 

Correspondingly, the union (logical disjunction) of two fuzzy sets 𝐴𝐴 and 𝐵𝐵 is 

specified by the binary algebraic operation 𝑆𝑆, called the t-conorm or s-norm, used to 

aggregate their respective membership functions such that for all 𝑥𝑥 ∈ 𝑿𝑿, 

 (𝜇𝜇𝐴𝐴∪𝐵𝐵)(𝑥𝑥) = 𝑆𝑆�𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐵𝐵(𝑥𝑥)�, (14) 

which performs the binary mapping 

 𝑆𝑆: [0,1] × [0,1] → [0,1]. (15) 

The s-norm, or triangular co-norm, is formally the dual of the t-norm and, 

commensurate with de Morgan’s laws8, is complementary to any given t-norm 𝑇𝑇 by way 

of negation, 

 𝑆𝑆(𝑥𝑥,𝑃𝑃) = 1 − 𝑇𝑇(1 − 𝑥𝑥, 1 − 𝑃𝑃). (16) 

 

                                                 
8 de Morgan’s laws state that the complement of a union is equivalent to the intersection of complements 
where (𝐴𝐴 ∪ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ∩ 𝐵𝐵𝑐𝑐 and the complement of an intersection is equivalent to the union of complements 
where (𝐴𝐴 ∩ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ∪ 𝐵𝐵𝑐𝑐. Weisstein, Eric W. (2018). "de Morgan's Laws." MathWorld. 
http://mathworld.wolfram.com/deMorgansLaws.html. 
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Like their t-norm duals, s-norms must satisfy the following axiomatic properties: 

- Commutativity: 𝑆𝑆(𝑥𝑥,𝑃𝑃) = 𝑆𝑆(𝑃𝑃, 𝑥𝑥), 

- Associativity: 𝑆𝑆(𝑥𝑥, 𝑆𝑆(𝑃𝑃, 𝑧𝑧)) = 𝑆𝑆(𝑆𝑆(𝑥𝑥,𝑃𝑃), 𝑧𝑧),  

- Monotonicity: 𝑅𝑅𝑓𝑓 𝑥𝑥 ≤ 𝑃𝑃 𝑃𝑃𝑐𝑐𝑎𝑎 𝑤𝑤 ≤ 𝑧𝑧, 𝑃𝑃ℎ𝑆𝑆𝑐𝑐 𝑆𝑆(𝑥𝑥,𝑤𝑤) ≤ 𝑆𝑆(𝑃𝑃, 𝑧𝑧), 

- Boundaries: 𝑆𝑆(𝑥𝑥, 0) = 𝑆𝑆(0, 𝑥𝑥) = 𝑥𝑥, 𝑆𝑆(𝑥𝑥, 1) = 1. 

Subject to the defining axioms, triangular norms and co-norms therefore define 

general classes of operators for assessing the intersection and union of fuzzy sets, and many 

parameterized t-norms and s-norms are common in the literature. Pedrycz and Gomide 

(1998, 33) present a substantial treatment of those most frequently encountered, as well as 

a discussion of specific features of their subclasses. While each unique mapping “provides 

a way to vary the gain on the function so that it can be very restrictive or very permissive,” 

it is evident when considering the boundary conditions established by the basic properties 

of triangular norms and their co-norms that the 𝑚𝑚𝑅𝑅𝑐𝑐 (∧) and 𝑚𝑚𝑃𝑃𝑥𝑥 (∨) operators 

respectively belong to the classes of t-norms and s-norms, and are perhaps the most 

frequently used in practice (Pedrycz, 33; Mathworks, 1-23). Not coincidentally, these 

functions are in fact those utilized by Kurt Gödel’s (1932, 65) intuitionistic multi- and 

infinitely-valued logics shown to be completely sufficient for axiomatization. Figure 14 

depicts the three dimensional and contour graphs of several common mappings, 

encapsulated by, and as an interval-constrained instance of, the Schweizer-Sklar family of 

triangular norms (1963, 69). 

The minimum t-norm, when constrained to bivalence, corresponds to the set 

intersection operator and therefore provides an upper bound on the t-norms class (whose 
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supremum is 1). Alternatively, the ordinary product is sometimes used for intersection (as 

it is with the probabilities of two independent events in probability theory; 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) =

𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)), whereas the lower bound on the t-norm class is formed by the drastic product. 

Accordingly, the bounds of t-norms are defined by 

 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐(𝑥𝑥,𝑃𝑃) ≤ 𝑇𝑇(𝑥𝑥,𝑃𝑃) ≤ 𝑇𝑇𝑚𝑚𝑝𝑝𝑖𝑖(𝑥𝑥,𝑃𝑃). (17) 
 

 

Figure 14. Common and Boundary Triangular Norms and Co-Norms. 
Source: Author’s elaboration based on Béhounek, Libor. (2007). Public Domain.  
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Likewise, the maximum s-norm, as the dual to the minimum t-norm, constrained to 

bivalence corresponds to the set union operator and provides the lower bound on the s-

norm class (whose infimum is 0). Similar to its dual, the algebraic sum (here,𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) is 

sometimes used for union (again, in probability theory, that 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) −

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)), and the lower bound on the s-norm class is formed by the drastic sum. 

Accordingly, the bounds of s-norms are defined by 

 𝑆𝑆𝑚𝑚𝑑𝑑𝑚𝑚(𝑥𝑥,𝑃𝑃) ≤ 𝑆𝑆(𝑥𝑥,𝑃𝑃) ≤ 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐(𝑥𝑥,𝑃𝑃). (18) 
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III. Methodology 

“It has been observed, that a weight A of 10 grams and a weight B of 11 
grams produce identical sensations, that the weight B is just as 
indistinguishable from a weight C of 12 grams, but that the weight A is 
easily distinguished from the weight C. Thus the raw results of experience 
may be expressed by the following relations: A=B, B=C, A<C, which may 
be regarded as the formula of the physical continuum.”9 

 
- Henri Poincaré 
La Science et l’Hypothèse (1902, 34) 

3.1 Chapter Overview 

This chapter presents a general methodology for the quantification of military 

operational risk that coincides with the process of Risk Appraisal as defined in the DoD’s 

Joint Risk Analysis Methodology. This general methodology capitalizes on the human-

thought-like approximate reasoning afforded by fuzzy logic by way of a fuzzy inference 

system, introduced in Section 3.2. The first phase of the method, knowledge elicitation, is 

discussed in Sections 3.3.1 through 3.3.3, and navigates the process of building the model, 

particularly in the context of Joint Planning (JP 5-0) and Joint Operations (JP 3-0). Sections 

3.4.1 through 3.4.6 discuss the mathematical mechanisms of the model’s execution. 

Section 3.5 concludes the chapter and discusses use of the model’s results. For exposition, 

a small-scale example problem parallels the sequential processes examined throughout.  

                                                 
9 Poincaré, Henri. (1913). Science and Hypothesis. Trans. Halsted, George Bruce. New York: The Science 
Press. Poincaré is referring to the observations of Gustav Fechner (1801-1887), who in 1860 published 
Elemente der Psychophysik; the Weber-Fechner laws postulate the differences between actual and perceived 
physical stimuli. In essence, the inherent inaccuracy of human sensory perception in the physical continuum 
necessitates approximation that permits relative comparison, but not strict distinction, of physical 
phenomena. 
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3.2 Fuzzy Inference Methodology 

The proposed methodology for reconciling current operational risk management 

practices with their apparent deficiencies utilizes the same fundamental rule-based 

structure employed in the logic controllers of many automated devices, a process referred 

to as a fuzzy inference system (FIS), fuzzy logic inference system (FLIS), or fuzzy expert 

system (FES) (Shapiro, 17). In these processes, crisp input values are ultimately mapped 

to a crisp output space through a series of fuzzy operations independently detailed in 

Chapter II. In the specific context of military operational risk management, it is desirable 

that the input variables be metrics correlated with suitable key risk indicators (KRIs); the 

output value is an aggregate risk value used to inform risk decisions or course of action 

comparison in operational planning (Girling, 251). Illustrated in Figure 15, a FIS can be 

thought to consist of two primary structures; first, a knowledge base in which the risks, 

their indicators, and measures inform the construction of a membership function database 

and compatible logical rule base. Second, a logical processor, or “inference engine,” that 

subjects the measured (or projected) input variables to a procedure consisting of the five 

sequential subprocesses of fuzzification, composition, implication, aggregation, and 

defuzzification. While the exact architecture of the FIS presented in this document is a 

commonly practiced one, its unique application within the DoD’s existing risk framework 

warrants, for the purpose of brevity, the discrimination between it and the general case, and 

is henceforth referred to as the “Risk Appraisal Fuzzy Inference System,” or RAFIS. 
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Figure 15. Anatomy of a Fuzzy Inference System. 
Source: Author’s elaboration based on Shapiro (18) and Reveiz (17). 

  

 The Joint Risk Analysis Methodology (JRAM) detailed in Chapter II describes a 

framework consisting of three fundamental pillars and four supporting activities. Of these 

components, the RAFIS methodology proposed herein is concerned primarily with Risk 

Appraisal, “the generation of knowledge and understanding,” as opposed to Risk 

Management which entails the actualization of risk decisions and implementation of 

controls (JRA, B-2). Naturally, effective Risk Communication is a persistent requirement 

throughout the risk analysis process; as an expert system, it is in the nature of any FIS to 

facilitate inter-domain conversation, particularly in the collaborative design of the logical 

rule base. Additionally, the proposed model’s knowledge elicitation process abstracts a risk 
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ontology that satisfies the JRAM’s subordinate steps of Problem Framing and Risk 

Assessment which jointly require specification of the military operation to be modeled, 

examination of its particular risks, exploration of their correlations and causal pathways, 

development of measurement criteria, and definition of a problem specific vocabulary. 

Finally, the first element of Risk Judgment is addressed through the crisp numerical output 

of the RAFIS; it is the goal of Risk Characterization to capture comparative assessments 

of the operation’s independent risk factors. While admitting that quantification and visual 

depiction are desirable when informing risk decisions, and accordingly endorsing 

mathematical expectation and the “risk [matrix] contour graph” as tools thereof, the JRAM 

concedes that it “is ultimately a qualitative effort” (JRA, B-4). 

Alternatively, the RAFIS offers a methodology that consistently provides 

quantitative valuations of risks and necessarily generates, as a byproduct of the inference 

process, ‘fuzzy risk matrices’ for the pictographic comparison of all pairwise indicators 

and their resultant risk values. The RAFIS, embedded and subordinated to the JRAM and 

as a continuously iterative parallel to the Joint Planning Process (JPP), is depicted in Figure 

16 as the motivating apparatus that energizes the wholesale risk appraisal and management 

construct; appropriate to this analogy, the Fuzzy Inference Engine is, in particular, the 

driving mechanism in the conveyance of risk knowledge, understanding, decision, and 

action. 
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Figure 16. Dynamics of the JPP, JRAM, and RAFIS. 
 

3.3 Knowledge Elicitation 

 In what is most closely synonymous with the JRAM’s Problem Framing, but also 

concerned with Risk Assessment, knowledge elicitation is the process by which the model’s 

mathematical structure is formulated and its constituent elements parameterized. As 

operational risks are, in large part, comprised of emerging threats in diverse geographic 

environments, they are expectedly subject to underdeveloped experience data. 

Consequently, expert opinion is elicited to serve as the principal evidentiary source from 

which the model’s construction is informed; in particular, the causal relationships specified 
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in the inference system’s rule base confer meaning and utility to the otherwise 

unenlightened model. It is essential that the analyst, serving as the knowledge engineer, 

exercise due diligence in facilitating elicitation; the very quality of the advising experts’ 

opinions directly translates to the model’s credibility and usefulness. In keeping with the 

JRAM, knowledge elicitation is a continuous and iterative process in which feedback 

mechanisms are established to fine-tune the system’s parameters and rules. Accordingly, 

the RAFIS capitalizes on three information vectors contemporaneously present throughout 

the JPP and illustrated in Figure 16: course of action (CoA) evaluation criteria, staff 

estimates, and operation assessment.  While risks and their indicators are not fully 

coterminous with the standards and measures established in each of these distinct veins, 

they form a repository from which the knowledge base may, in part, be extrapolated. 

CoA evaluation criteria are designed to measure a CoA’s relative effectiveness by 

distinguishing the contributory factors of mission success from those of mission failure 

(and in accordance with the commander’s planning guidance). Established prior to 

wargaming as a hedge against bias and subjectivity when testing, they are precisely defined 

and often evaluated with a numerical score by the staff member with functional area 

responsibility and weighted according to relative importance. It is plainly evident how this 

process might contribute to identifying risk factors and their indicators, bounding possible 

criterion domains, parameterizing result categories and, ultimately, through wargaming, 

provide suitable estimates for model inputs. Appendix G of JP 5-0, Joint Planning, offers 

an overview and example of CoA comparison techniques. 
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Staff estimates, meanwhile, provide a running and more highly-granulized 

assessment of a functional area’s level of mission support. Again, initial estimates are 

expected to assist in structuring the RAFIS; identification of essential resource shortfalls, 

capability limitations, or operational impediments may prove to be among the dominant 

drivers of mission risk. Subsequent updates naturally allow for model refinement, not only 

up to the point of input variable generation for the purposes of CoA comparison, but also 

in monitoring the evolution of risk as the operation proceeds in execution. With regard to 

external adversarial threats or Operational Environment (OE) hazards, it is of particular 

consequence that “critical knowledge gaps in initial estimative intelligence” and the 

validation of key planning assumptions be addressed through a comprehensive intelligence 

collection plan (JP 5-0, V-16). In many cases, the importance of the associated risks 

necessitates the establishment of Priority Intelligence Requirements (PIRs) specific to their 

causal factors or indicators; for this reason, bilateral communication between the 

intelligence staff and the knowledge engineer is imperative. In competing for the 

prioritization of limited collection assets, the risk analyst must advocate when necessary, 

but also be critically-minded in determining the true merit of the KRI as an indicator of its 

associated risk factor. Appendix C of JP 5-0, Joint Planning, details the process of capturing 

staff estimates in the context of the JPP. 

Finally, operation assessment “refers specifically [to measuring] progress [or 

regression] towards accomplishing tasks, creating conditions or effects, and achieving 

objectives” during both planning and execution (JP 3-0, II-9). In this capacity, it utilizes 

Measures of Effectiveness (MOEs) to monitor the degree of change in the OE due to an 
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operational task; Measures of Performance (MOPs) are designed to evaluate the standard 

to which the task is conducted. While staff estimates are a natural vehicle for these 

measures, operation assessment is distinctively oriented on the linkages between an action 

and its desired effect, or attainment of an end state. Indicators like MOEs and MOPs are 

judiciously selected for their ability to delineate causalities and are consequently subjected 

to a number of axiomatic efficacy gauges that are expectedly congruent with those applied 

to Key Risk Indicators. While Annex A to Appendix D of JP 5-0, Joint Planning, provides 

a satisfactory overview of operation assessment, it is the Data Collection Plan (DCP) 

discussed in Annex B that is of most interest to the knowledge engineer. The DCP institutes 

a number of additional criteria to ensure the ‘measurability’ and methods of MOP and 

MOE indicator collection; these criteria are equally applicable to KRIs (JP 5-0, D-B-1). 

3.3.1 Determine Risk Hierarchy, Risk Factors, and Key Risk Indicators 

 

𝑅𝑅𝐹𝐹𝑓𝑓: 𝑆𝑆𝑆𝑆𝑃𝑃 𝑃𝑃𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 𝑅𝑅𝑐𝑐𝑎𝑎𝑆𝑆𝑥𝑥𝑆𝑆𝑎𝑎 𝑃𝑃𝑃𝑃 𝑓𝑓 ∈ {1, 2, … ,𝑚𝑚} 

𝒀𝒀𝑓𝑓:𝑈𝑈𝑐𝑐𝑅𝑅𝑆𝑆𝑆𝑆𝑃𝑃𝑅𝑅𝑆𝑆 𝑃𝑃𝑓𝑓 𝐷𝐷𝑅𝑅𝑅𝑅𝑐𝑐𝑃𝑃𝑏𝑏𝑃𝑃𝑅𝑅𝑆𝑆 𝑓𝑓𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓 

𝒚𝒚: 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 𝑉𝑉𝑆𝑆𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑓𝑓 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑎𝑎𝑆𝑆𝑐𝑐𝑃𝑃 𝑉𝑉𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑅𝑅,𝒚𝒚 = (𝑃𝑃1,𝑃𝑃2,𝑃𝑃𝑓𝑓 , … ,𝑃𝑃𝑚𝑚) 

𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅,𝑓𝑓:𝑇𝑇𝑆𝑆𝑃𝑃𝑚𝑚 𝑆𝑆𝑆𝑆𝑃𝑃 𝑓𝑓𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓 

𝐾𝐾𝑅𝑅𝐼𝐼𝑘𝑘: 𝑆𝑆𝑆𝑆𝑃𝑃 𝑃𝑃𝑓𝑓 𝐾𝐾𝑆𝑆𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝑐𝑐𝑎𝑎𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 𝑅𝑅𝑐𝑐𝑎𝑎𝑆𝑆𝑥𝑥𝑆𝑆𝑎𝑎 𝑃𝑃𝑃𝑃 𝑅𝑅 ∈ {1, 2, … ,𝑐𝑐} 

𝑿𝑿𝑘𝑘: 𝑈𝑈𝑐𝑐𝑅𝑅𝑆𝑆𝑆𝑆𝑃𝑃𝑅𝑅𝑆𝑆 𝑃𝑃𝑓𝑓 𝐷𝐷𝑅𝑅𝑅𝑅𝑐𝑐𝑃𝑃𝑏𝑏𝑃𝑃𝑅𝑅𝑆𝑆 𝑓𝑓𝑃𝑃𝑃𝑃 𝐾𝐾𝑆𝑆𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝑐𝑐𝑎𝑎𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅 

𝒙𝒙: 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 𝑉𝑉𝑆𝑆𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑓𝑓 𝐼𝐼𝑐𝑐𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑎𝑎𝑆𝑆𝑐𝑐𝑃𝑃 𝑉𝑉𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑅𝑅,𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥𝑘𝑘 , … , 𝑥𝑥𝑖𝑖) 

𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘:𝑇𝑇𝑆𝑆𝑃𝑃𝑚𝑚 𝑆𝑆𝑆𝑆𝑃𝑃 𝑓𝑓𝑃𝑃𝑃𝑃 𝐾𝐾𝑆𝑆𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝑐𝑐𝑎𝑎𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅 

(19) 
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This first component of knowledge elicitation answers, to an extent, the “risk to 

what?” and “risk from what?” questions posed in the Problem Framing and Risk 

Assessment activities. Taken together, these two questions define the information desired 

as output from the model (to what?) and the informational demands of the model’s input 

(from what?) (Cox, 543). Whereas the JRAM incorporates the quantification of scales, 

probabilities, and consequences in these activities, the RAFIS does not. Instead, the output 

of this process is a hierarchical vocabulary of the linguistic universes, sets, and variables 

that comprise the scenario’s risk dialogue.  The “context-specific risk lens” in Figure 16 

alludes to the exacting inspection demanded of the knowledge engineer in circumstantial 

contemplation of the military operation of interest and its accordant compulsory tailoring 

of the risk framework. Specifically, the risk analyst must extricate, from the JPP’s three 

information vectors, a modeling infrastructure that is contextually considerate of the 

problem; there is no universal ontology for military operational risk. Indeed,  

“the military instrument of national power can be used in a variety of ways 
that vary in purpose, scale, risk, and combat intensity [and can be] 
understood to occur across a continuum of conflict ranging from war to 
peace” (JP 1, xi). 

 
While not prescriptive, it is useful to consider a variety of systems perspectives, or “lenses,” 

for decomposition of the OE, across the range of military operations, into a manageable 

construct. Among these are: 

 
- Operational Variables (PMESII-PT); Political, Military, Economic, Social, 

Infrastructure, Informational, Physical Environment, Time (JP 3-0, IV-3), 
 

- Mission Variables (METT-TC); Mission, Enemy, Terrain and Weather, Troops and 
Support Available, Time Available, Civil Considerations (ADRP 3-0, 1-2), 
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- ASCOPE; Areas, Structures, Capabilities, Organizations, People, Events (JP 5-0, 
IV-11), 
 

- Principles of Joint Operations (Principles of War); Objective, Offensive, Mass, 
Maneuver, Economy of Force, Unity of Command, Security, Surprise, Simplicity, 
Restraint, Perseverance, Legitimacy (JP 3-0, I-2), 
 

- Joint Functions (Warfighting Functions); Command and Control, Intelligence, 
Fires, Movement and Maneuver, Protection, Sustainment (JP 3-0, III-1), 
 

- Operational Environment Dimensions; Air, Land, Maritime, and Space Domains, 
the Electromagnetic Spectrum, Information Environment (including Cyberspace) 
(JP 5-0, IV-10), 
 

- (5-M); Man, Machine, Medium, Management, Mission (AFPAM 90-803, 13), 
 

- Joint Capability Requirements (DOTmLPF-P); Doctrine, Organization, Training, 
material, Leadership and Education, Personnel, Facilities, Policy (CJCSI 
5123.01H, A-8). 
 

The RAFIS is structured as a three tiered hierarchy in which the comprehensive 

Operational Risk is expanded into a set of 𝑚𝑚 subordinate Risk Factors (𝑅𝑅𝐹𝐹𝑓𝑓) that constitute, 

and are in fact synonymous with, the model’s consequent (dependent variables, 𝑃𝑃𝑓𝑓) 

universes of discourse (𝒀𝒀𝑓𝑓), and could take the form of “risk to…” the various elements of 

the systems perspectives enumerated in the preceding paragraph. The Risk Factors are 

further expanded into 𝑐𝑐 Key Risk Indicators (𝐾𝐾𝑅𝑅𝐼𝐼𝑘𝑘) that are either the direct determinants 

or adequately proximate indicators of the prime drivers of the Risk Factors, which 

comprise, and are likewise synonymous with, the model’s antecedent (independent 

variables, 𝑥𝑥𝑘𝑘) universes of discourse (𝑿𝑿𝑘𝑘). In this manner, the KRIs are representative of 

“risk from what?” Each Risk Factor and KRI are then further decomposed into term sets, 

effectively quantizing the linguistic variables into subordinate taxonomies of fuzzy sets 
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(𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅,𝑓𝑓 and 𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘, respectively). The number of fuzzy set ‘terms’ internal to each term 

set is an important characteristic of the model’s semantics that allows for varying degrees 

of granularity in expert judgment, but should be considered with regard to the shape and 

overlap of membership functions determined in the following elicitation step. Figure 17 

depicts the general structure of a hierarchy developed by this process.  

 

 

Figure 17. RAFIS Risk Hierarchy. 
 

While not mathematically necessary to differentiate a Risk Factor or KRI from its 

universe (for instance, 𝐾𝐾𝑅𝑅𝐼𝐼𝑘𝑘 and 𝑿𝑿𝑘𝑘), the distinction is made in the RAFIS to isolate 

linguistic variables from their quantitative descriptions. Similarly, a term set need only 

specify its linguistic elements; the fuzzy membership function defining each elemental 

term is calibrated later in the elicitation process. To clarify the outcome of this process, a 
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trivial example is introduced in which the problem of interest is adequately addressed by a 

single risk factor. It is therefore termed, simply, Risk Level, where 

 𝑅𝑅𝐹𝐹1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃. (20) 

Contributing to this Risk Factor are the two KRIs elicited from expert opinion, Probability 

and Severity, 

 𝐾𝐾𝑅𝑅𝐼𝐼𝑘𝑘 = {𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃}. (21) 

In the example, suppose that expert opinion suggests that an appropriate resolution for 

quantizing Risk, Probability, and Severity is by three categories each. The term sets are, 

respectively, 

 

𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅,1 = {𝐿𝐿𝑃𝑃𝑤𝑤,𝑀𝑀𝑆𝑆𝑎𝑎𝑅𝑅𝑏𝑏𝑚𝑚,𝐻𝐻𝑅𝑅𝐻𝐻ℎ}, 

𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,1 = {𝑈𝑈𝑐𝑐𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑃𝑃𝑃𝑃,𝑂𝑂𝑐𝑐𝑐𝑐𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃,𝐹𝐹𝑃𝑃𝑆𝑆𝐹𝐹𝑏𝑏𝑆𝑆𝑐𝑐𝑃𝑃}, 

𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,2 = {𝑁𝑁𝑆𝑆𝐻𝐻𝑃𝑃𝑅𝑅𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆,𝑀𝑀𝑃𝑃𝑎𝑎𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆,𝐶𝐶𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃}. 

(22) 

These definitions collectively satisfy the output of this step for the given example. The 

subsequent step involves parameterization of the universes of Probability, Severity, and 

Risk Level and membership functions giving mathematical description of the term sets. 

3.3.2 Calibrate Membership Functions 

 
𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅,𝑓𝑓 = �𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,1 , 𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,2 , … , 𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,𝑝𝑝� ∀ 𝑓𝑓 ∈ 𝑅𝑅𝐹𝐹 

𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘 = �𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,1 , 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,2 , … , 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑝𝑝� ∀ 𝑅𝑅 ∈ 𝐾𝐾𝑅𝑅𝐼𝐼 
(23) 

where 𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,𝑙𝑙  and 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙 are the 𝑃𝑃𝑑𝑑ℎ membership functions in their respective term sets, 

𝑃𝑃 ∈ {1, 2, … ,𝑆𝑆}. 
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It is next necessary to attune the KRIs and their consequent risk factors (which are, 

respectively, the model’s independent and dependent variables) with their fuzzy 

representations. In other words, the calibration process is one in which crisp values of the 

input variables are associated with that universe’s descriptive subsets, effectively 

converting the numerical input to a linguistic one. Membership functions encode this 

association as a degree of truth to which the associated variable is considered a member of 

the linguistic set. In this sense, articulation of the model’s parameters “requires a shift in 

knowledge representation from logical determinism and arithmetic formalism to a 

semantics and property-based representation [that is] expressed directly through the surface 

characteristics of fuzzy sets” (Cox, 492). The process of calibrating the membership 

functions determines the important fuzzy set characteristics of shape and overlap, the latter 

of which is tantamount to set ambiguity, or fuzziness. 

 While Chapter II’s discussion of membership function selection gives a 

comprehensive accounting of a concept’s characteristic shape, the horizontal method is 

employed as an experimental approach for apprising a function’s construct in the proposed 

FIS methodology for several advantageous considerations. In particular, conduct of the 

sampling largely coincides with existing operational planning processes; staff sections are 

regarded as the expert population corresponding to the subject matter for which they are 

responsible. This is not inconsistent with current practice in which the staff identifies and 

elevates risks within their functional area, albeit chiefly in qualitative fashion. Where 

quantitative measures are presently introduced, however, there exists a distinct lack of 

standardization that breeds divergent consistency in evaluation; the resulting risk 
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assessments are ultimately incommensurable and not well-suited to comprehensive course 

of action comparison. Not only does the horizontal method address this need for 

standardization, but even in its experimental simplicity it is capable of delivering “reliable 

and significant estimates” (Pedrycz, 19). 

Essentially, the method consists of surveying 𝑐𝑐 number of experts as to whether a 

given sample value, 𝑥𝑥𝑘𝑘𝑑𝑑, is compatible with the term 𝑃𝑃 in universe of discourse 𝑿𝑿𝑘𝑘. This is 

posed as a question accepting only binary responses in the positive 𝑃𝑃𝑝𝑝(𝑥𝑥𝑘𝑘𝑑𝑑) or negative 

𝑁𝑁𝑝𝑝(𝑥𝑥𝑘𝑘𝑑𝑑), from which the estimated degree of truth at value 𝑥𝑥𝑘𝑘 is the ratio of positive to total 

responses such that 

 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙(𝑥𝑥𝑘𝑘𝑑𝑑) =
∑ 𝑤𝑤𝑝𝑝𝑃𝑃𝑝𝑝(𝑥𝑥𝑘𝑘𝑑𝑑)𝑝𝑝

∑ 𝑤𝑤𝑝𝑝𝑃𝑃𝑝𝑝(𝑥𝑥𝑘𝑘𝑑𝑑) + 𝑤𝑤𝑝𝑝𝑁𝑁𝑝𝑝(𝑥𝑥𝑘𝑘𝑑𝑑)𝑝𝑝
 (24) 

where 𝑅𝑅 ∈ {1, 2, 3 … ,𝑐𝑐} is the index of the responding expert, 𝑤𝑤𝑝𝑝 is an optional weight 

attributing some level of authority or expertise to expert 𝑅𝑅, and the positive and negative 

variables are mutually exclusive indicators,  𝑃𝑃𝑝𝑝(𝑥𝑥𝑘𝑘) = 1 − 𝑁𝑁𝑝𝑝(𝑥𝑥𝑘𝑘) ∈ {0,1}. The survey is 

conducted over some selected number of elements 𝑥𝑥𝑘𝑘𝑑𝑑 of universe 𝑿𝑿𝑘𝑘, where s signifies 

the distinct element sampled. The set of truth values so determined not only serves as the 

basis for fitting a distribution and, accordingly, the fuzzy set 𝑃𝑃’s membership function, but 

in fact defines the fuzzy set’s bounds via the result’s standard deviation, 

 �𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅) −
�𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅) �1 − 𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅)�

∑ 𝑤𝑤𝑅𝑅𝑃𝑃𝑅𝑅(𝑥𝑥𝑅𝑅𝑅𝑅) + 𝑤𝑤𝑅𝑅𝑁𝑁𝑅𝑅(𝑥𝑥𝑅𝑅𝑅𝑅)𝑅𝑅
 ,    

(25) 

 𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅) + �𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅) �1 − 𝜇𝜇𝐾𝐾𝑅𝑅𝐼𝐼,𝑅𝑅,𝑃𝑃(𝑥𝑥𝑅𝑅𝑅𝑅)�
∑ 𝑤𝑤𝑅𝑅𝑃𝑃𝑅𝑅(𝑥𝑥𝑅𝑅𝑅𝑅) + 𝑤𝑤𝑅𝑅𝑁𝑁𝑅𝑅(𝑥𝑥𝑅𝑅𝑅𝑅)𝑅𝑅

� 
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To ensure commensurability of the output fuzzy sets, thereby permitting the 

combination of risk factor conclusions into a single operational risk value, it is necessary 

that the analyst define risk factors over the same universe of discourse, 𝒀𝒀𝑓𝑓. This does not, 

however, require that each risk factor share the same number or shape of subordinate 

linguistic descriptions, and each membership function, 𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,𝑙𝑙(𝑃𝑃𝑓𝑓), can be defined 

according to its conditional interpretation. However, that the RAFIS will, in fact, permit 

alternative definitions of the consequent universes. Should risk decisions demand more 

concrete considerations than an abstract risk value, it is possible that model outputs be 

instituted in the language of “mission success (which missions will and which will not be 

accomplished), time (how much longer will a mission take to achieve success), and forces 

(casualties, future readiness, etc.), and [to a lesser extent] political implications” (JP-5, V-

14). Regardless, the outcome of this process is that all term sets, 𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅,𝑓𝑓,𝑙𝑙 and 𝐿𝐿𝑉𝑉𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙, are 

defined with each elemental membership function fully parameterized.  

Continuing with the example problem introduced in Section 3.3.1, the fuzzy sets 

are depicted in Figure 18; for the purpose of illustration, the assumed membership 

functions of the Probability KRI are Gaussian, Severity’s are triangular, and those of the 

Risk Factor, Risk Level, are trapezoidal. These membership function shapes are selected to 

delineate the behaviors from one another in later exposition; they are not, however, chosen 

arbitrarily but are rather representative of the ambiguity intrinsic to the linguistic concepts. 

Note also that the process of eliciting the characteristics of the membership functions 

simultaneously aids in defining the universe of discourse’s domain (such that the minimum 
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value of the qualitatively lowest fuzzy set and the maximum value of the qualitatively 

highest define the universal boundaries). 

 

Figure 18. Example Antecedent and Consequent Membership Functions. 
 

3.3.3 Specify Inference Rules 

 

𝑅𝑅1 =  If (𝑲𝑲𝑲𝑲𝑰𝑰𝟏𝟏 is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,1,1) and (𝑲𝑲𝑲𝑲𝑰𝑰𝟐𝟐 is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,2,1) then (𝑲𝑲𝑹𝑹𝟏𝟏 is 𝜇𝜇𝑅𝑅𝑅𝑅,1,1), 

𝑅𝑅2 =  If (𝑲𝑲𝑲𝑲𝑰𝑰𝟏𝟏 is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,1,2) and (𝑲𝑲𝑲𝑲𝑰𝑰𝟐𝟐 is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,2,2) then (𝑲𝑲𝑹𝑹𝟏𝟏 is 𝜇𝜇𝑅𝑅𝑅𝑅,1,2), 

𝑅𝑅𝑗𝑗 =  If (𝑲𝑲𝑲𝑲𝑰𝑰𝒌𝒌 is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙) and (𝑲𝑲𝑲𝑲𝑰𝑰𝒌𝒌′ is 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘′,𝑙𝑙) then (𝑲𝑲𝑹𝑹𝒇𝒇 is 𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,𝑙𝑙), 

and so forth… 

(26) 

where 𝑅𝑅𝑗𝑗 is the 𝑗𝑗th inference rule. 

In this third compositional step of knowledge elicitation, expert knowledge is 

deconstructed and encoded into the system through development of a rule base that 

contains a series of inference rules using natural language to specify the interactions 

between KRIs and their causal relationships with the consequent Risk Factors, thereby 

“mimicking human’s reasoning capabilities to solve complex systems” (Reveiz, 24). The 

rule base therefore describes the expected behavior of the output Risk Factors given the 

input KRI variables (and, in turn, the degree to which the KRI’s term sets are satisfied). 

The rules, though linguistic, constitute the model’s mathematical processes; they encode 

the fundamental transformations executed on the input data and ultimately give shape to a 
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response surface that reacts in a predictable and contextually appropriate manner, yielding 

the model’s output data. Construction of the model’s rule base is, in terms of the JRAM, 

predominantly captured by Risk Assessment in that it formalizes the linkages between the 

hazards and their potential consequences (in consideration of the risk drivers). It is the 

actual execution of the model, however, results in the Risk Characterization answering 

“how much risk?” (JRAM, B-3).  

There exist no hard and fast procedures for the development of the rule base. In the 

previous step, the vocabulary of the model’s fuzzy sets is used to define the semantic 

properties that underlie the relationship between the functional area expert and the decision 

process. In this step, the knowledge engineer’s task is to codify the expert’s decision and 

judgement protocols in a series of inference rules that manipulate those fuzzy sets 

according to the fuzzy operators used in the propositional calculus (Cox, 493). The 

structure of the inference rules is discussed in Chapter II’s introduction to “fuzzy 

reasoning.” In general practice, however, the rule base should cover every possible 

combination of antecedent linguistic variable that contributes to the formation of some 

consequent space. Consider the first three rules of this Chapter’s ongoing example: 

 

𝑅𝑅1 = If (Probability is Unlikely) and (Severity is Negligible) 
          then (Risk is Low) 

𝑅𝑅2 = If (Probability is Occasional) or (Severity is Moderate)  
          then (Risk is Medium) 

𝑅𝑅3 = If (Probability is Frequent) or (Severity is Critical) 
          then (Risk is High) 

(27) 

While not exhaustively listing every possible combination of antecedents, the rules 

illustrate how the subject matter expert might exercise judgment in construction of the 
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logical rule base. Of course, the disjunctive case (of “or”) is clearly irregular or even 

inappropriate for the ruleset governing the interaction of Probability and Severity; expected 

risk is often calculated as the expectation (product) of these two factors. Use of the 

conjunction “and” would permit consistency within the ruleset and allow independent 

definition of all possible pairwise combinations. This example is constructed to depict the 

use of both logical connectives for the sake of exposition; inconsistency with the defined 

rule base, specifically resulting in non-monotonicity of the output surface, is 

acknowledged.  

 

Figure 19. Example Fuzzy Associative Memory (FAM). 
 

Nevertheless, a convenient and commonly used notation for recording the rule base 

is the Fuzzy Associative Memory, or FAM, which captures in tabular form the 

transformations of fuzzy sets to others (Kosko, 306). While the example’s dual-input, 

single-output formulation is intuitively recorded in a compact representation, complex risk 

decisions may, in terms of the RAFIS, require 𝑚𝑚 number of 𝑐𝑐-dimensional hypercubes, 

each dimension quantized by 𝑆𝑆. The rule base is the functional mechanic of the model 

itself; the clarity and comprehension of rules are vital to the model’s “maintainability, 

quality, and expandability” (Cox, 554). The example’s FAM in Figure 19 is derived from 

an extension of the previously listed rules; it was purposely constructed to resemble a 
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traditional risk matrix (particularly considering the axes of likelihood and consequence). 

While the divorce of fuzzy logic from probability theory bears repeating, and is not a 

required component in the model, it is not prohibited from inclusion either, and the example 

is in fact a viable implementation of the RAFIS. The example’s risk matrix will later be 

compared with its fuzzy counterpart. 

3.4 Implementation of the RAFIS and Selection of Fuzzy Operators 

The topology of the Risk Factors’ consequent space is contingent on the 

mathematical operators applied during the logical processes of composition, implication, 

aggregation, and defuzzification. While the rest of this chapter addresses each of these 

processes in sequence, several basic t-norms and t-conorms are introduced in Chapter II 

that may serve as the fuzzy operators used to perform the transformations at each stage of 

the model. The RAFIS employs a Mamdani-type fuzzy inference system, introduced in 

1975 as one of the first applications of a rule-based fuzzy logic controller and widely 

considered the most commonly adopted inference technique. The Mamdani fuzzy logic 

controller is characterized by membership functions that define the consequent spaces as 

fuzzy sets, therefore requiring a disjunctive aggregation of rules and necessitating a process 

of defuzzification to interpolate a crisp value for each output variable (Yuan, 835). 

Mamdani-types also utilize the supremum-minimum (sup-min) compositional rule of 

inference for approximate reasoning postulated by Zadeh (1975, 28). Finally, Castro (1995) 

proved that the Mamdani class of controllers are universal approximators; that is, as a fuzzy 

logic it is capable of approximating any real continuous function defined on a compact 

domain to any arbitrary accuracy. This contribution provides the theoretical foundation for 
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their application over and above qualitative justifications that exploit the inherent nature of 

their linguistic reasoning; in effect, it addresses the question of why fuzzy rule-based 

systems “have such good performance for a wide variety of practical problems” (Castro, 

629). For these reasons, the RAFIS’ Fuzzy Inference Engine utilizes the min and max 

operators for fuzzy conjunction and disjunction in composition, the min operator in 

implication, the sup operator for aggregation, and the centroid method of defuzzification. 

3.4.1 Fuzzification 

 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙(𝑥𝑥𝑘𝑘),𝑅𝑅 ∈ 𝐾𝐾𝑅𝑅𝐼𝐼, 𝑃𝑃 ∈ 𝑅𝑅𝑗𝑗 , 𝑗𝑗 ∈ 𝑅𝑅 ∀ 𝑥𝑥𝑘𝑘 ∈ 𝒙𝒙 (28) 

 Given the operational risk factors and their KRIs determined in the knowledge 

elicitation process, the associated input variables, 𝑥𝑥𝑘𝑘, are first measured or forecast per 

KRI, per risk. In the first step of the RAFIS’ logical process, known as fuzzification, the 

crisp (non-fuzzy numerical) values are mapped to the corresponding fuzzy (linguistic) sets 

as prescribed for that variable’s universe of discourse (clearly, any variable assessed 

outside the universe’s boundaries is problematic; barring extreme “Black Swan” events in 

which the paradigm must necessarily be readjusted, such a situation is indicative of an 

inadequately constructed universe of discourse and fuzzy set parameters) (Taleb, xxii). The 

mapping is accomplished by way of evaluating each membership function given the input 

metric, per element of each propositional antecedent, per logical rule. For each evaluated 

membership function, the output of this first step is the degree of truth to which the input’s 

measurement is considered to belong to the fuzzy set, effectively “fuzzifying” the formerly 

crisp input. 
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 Continuing with the chapter’s example, fuzzification occurs in each instance where 

an input metric is mapped to a fuzzy set associated with an element of a rule’s antecedent. 

Figure 20 demonstrates this application to the first premise of the second rule, (Probability 

is Occasional). This can be interpreted to mean that a value of 𝑥𝑥 = 0.7 in universe of 

discourse 𝑿𝑿 is compatible with the linguistic concept of “occasional” probability to a 

degree of 0.642; equivalently, the extent to which the probability is considered occasional. 

All inputs are likewise fuzzified over each elemental premise for each rule. 

 

Figure 20. Example Fuzzification of Input Variable. 
Source: Author’s elaboration based on Mathworks (1-29). 

 

3.4.2 Composition 

 𝜇𝜇𝐴𝐴𝑗𝑗(𝒙𝒙) = � 𝜇𝜇𝐾𝐾𝑅𝑅𝐾𝐾,𝑘𝑘,𝑙𝑙(𝑥𝑥𝑘𝑘) ∀ 𝑗𝑗 ∈ 𝑅𝑅
𝑘𝑘∈𝐾𝐾𝑅𝑅𝐾𝐾,𝑙𝑙∈𝑅𝑅𝑗𝑗

  (29) 

where 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥) is the composite (singleton) antecedent truth value for rule 𝑗𝑗, compounded 

via conjunction, and evaluated for all rules. 

 The second component of the RAFIS’ Inference Engine, herein termed 

composition, accepts as input the already fuzzified truth degree of each rule’s individually 

evaluated premises, applies (if present; some rules may only contain a single premise) the 

fuzzy set operator that corresponds with the logical connective between those premises 
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(and, or, not), and ultimately forms a composite antecedent that yields a single fuzzy truth 

value representative of the degree to which the rule’s antecedent is comprehensively 

satisfied. Composition is conducted in parallel against the whole ruleset. The formulation 

proposes a grand intersection of the entire antecedent based on the conjunctive structure 

consistent with the FAM rule base; that is, all predicate expressions are joined by “and.” 

The preceding discussion of universal approximators establishes that any number of 

mappings meeting the criteria of t-norms (for the logical conjunction, and) and s-norms 

(for the logical disjunction, or) are sufficient to perform the mathematical operations of 

intersection and union, respectively. The most common operators for conjunctions are 

minimum and ordinary product; for disjunctions, maximum and algebraic sum. While the 

RAFIS will necessarily accept as final antecedent truth the minimum of their collective 

truths, the example demonstrates use of the maximum in the disjunctive case. 

 

Figure 21. Example Composition of Antecedents. 
Source: Author’s elaboration based on Mathworks (1-30). 

 

Figure 21 builds on the example by compositing the two antecedent premises of the 

second rule, (Probability is Occasional) or (Severity is Moderate), having already been 

evaluated at 𝑥𝑥 = 0.7 and 𝑃𝑃 = 3.2. For expository purposes, the antecedent is a disjunction 
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and dictates use of a s-norm; the maximum operator is selected. Of the two degrees of truth 

for occasional probability and moderate severity, 0.642 and 0.55 respectively, the former 

achieves the maximum, and is the output value of this step. Other rules in the formulation 

are evaluated likewise, in parallel. 

3.4.3 Implication 

 𝜇𝜇𝐶𝐶𝑗𝑗
′ �𝑃𝑃𝑓𝑓� = 𝜇𝜇𝐴𝐴𝑗𝑗(𝒙𝒙) ∧  𝜇𝜇𝑅𝑅𝑅𝑅,𝑓𝑓,𝑙𝑙�𝑃𝑃𝑓𝑓� ∀ 𝑓𝑓 ∈ 𝑅𝑅𝐹𝐹, 𝑗𝑗 ∈ 𝑅𝑅  (30) 

where 𝜇𝜇𝐶𝐶𝑗𝑗
′ �𝑃𝑃𝑓𝑓� is the partial consequent truth value of risk factor 𝑓𝑓 for rule 𝑗𝑗, evaluated 

for all risk factors in rule 𝑗𝑗, for all rules. 

The third subprocess of the RAFIS is implication of the, now composite, antecedent 

to the consequent, predicated on the specified rule. For each rule evaluated in parallel, 

implication involves the input of a single, fuzzified, independent variable and, as an output, 

modifies the fuzzy set associated with that rule’s consequent by the degree of the input 

variable. More clearly, the antecedent’s composite value specifies the level of support that 

the proposition’s consequent is true. This is accomplished in one of two ways. In the first, 

the minimum operator truncates the consequent’s fuzzy set; utilizing the representation 

theorem, this method effectively discounts the support region of the fuzzy set’s 𝛼𝛼-cut where 

𝛼𝛼 is equal to the antecedent’s composite value. Alternatively, the ordinary product operator 

may be used as a scalar of the consequent’s fuzzy set. It is also important to note that a 

weighted ruleset may be optionally implemented to mitigate the importance of individual 

rules relative to the others; weights in the interval of [0,1] are applied to the antecedent’s 

output prior to implication and are otherwise assumed to be 1 (Mathworks, 1-31). Figure 
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22 depicts the truncation achieved by the minimum operator on the (Risk is Medium) 

consequent set; specific to the example, this is 

 𝑆𝑆𝑏𝑏𝑆𝑆𝑆𝑆(𝑚𝑚𝑆𝑆𝑎𝑎𝛼𝛼=0) − 𝑆𝑆𝑏𝑏𝑆𝑆𝑆𝑆(𝑚𝑚𝑆𝑆𝑎𝑎𝛼𝛼=0.642) = {𝑧𝑧 ∈ 𝑚𝑚𝑆𝑆𝑎𝑎|𝜇𝜇𝑚𝑚𝑝𝑝𝑑𝑑(𝑧𝑧) < 0.642}. (31) 

 

Figure 22. Example Implication of Consequents. 
Source: Author’s elaboration based on Mathworks (1-31). 

 

3.4.4 Aggregation 

 𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓� =  �𝜇𝜇𝑐𝑐𝑗𝑗
′ �𝑃𝑃𝑓𝑓� ∀ 𝑓𝑓 ∈ 𝑅𝑅𝐹𝐹

𝑗𝑗∈𝑅𝑅

 (32) 

where 𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓� is the consequent truth value for risk factor 𝑓𝑓 aggregated over the entire 

rule base, for all risk factors 𝑓𝑓. 

Accepting as input the truncated or scaled fuzzy set outputs of the implication 

subprocess, the fourth component of the RAFIS aggregates, or compiles, the residual 

consequents into a single fuzzy set. This output set of the aggregation, illustrated in the 

right-most column of Figure 23, is representative of the support for the consequent given 

the propositional set of all non-fuzzy inputs evaluated over all rules. In fact, the aggregate 

membership function is specific to the particular crisp inputs; alternate inputs may generate 

a distinct membership function. Mathematically, the aggregation is executed through any 

commutative operator for the logical disjunction (such that the ordinal sequence of 
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inclusion is immaterial); the maximum, ordinary sum (over all values of 𝒁𝒁), and algebraic 

sum (𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) are all used in the literature as t-conorms to determine multi-set union. In 

the example, aggregation via maximum of the three resultant consequent fuzzy sets yields 

the membership function shown in the bottom-right panel of Figure 23. In a broad sense, 

the aggregate membership function is therefore 

 �𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙∪𝑚𝑚𝑝𝑝𝑑𝑑∪ℎ𝑝𝑝𝑖𝑖ℎ�(𝑧𝑧) 
(33) 

 = max�𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧) < 0.004, 𝜇𝜇𝑚𝑚𝑝𝑝𝑑𝑑(𝑧𝑧) < 0.642, 𝜇𝜇ℎ𝑝𝑝𝑖𝑖ℎ(𝑧𝑧) < 0.368�. 
 

 

Figure 23. Example Inference Detail. 
Source: Author’s elaboration based on Mathworks (1-36). 
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3.4.5 Defuzzification  

 𝑃𝑃�𝑓𝑓 =  
∫ 𝑃𝑃𝑓𝑓 𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓�
𝑦𝑦�𝑓𝑓
𝑦𝑦�𝑓𝑓

𝑎𝑎𝑃𝑃𝑓𝑓

 ∫ 𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓� 𝑎𝑎𝑃𝑃𝑓𝑓
𝑦𝑦�𝑓𝑓
𝑦𝑦�𝑓𝑓

≅
∑ 𝑃𝑃𝑓𝑓𝑝𝑝𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓𝑝𝑝�𝑖𝑖
𝑝𝑝=0 

∑ 𝜇𝜇𝐶𝐶�𝑃𝑃𝑓𝑓𝑝𝑝�𝑖𝑖
𝑝𝑝=0 

∀ 𝑓𝑓 ∈ 𝑅𝑅𝐹𝐹 (34) 

where 𝑃𝑃�𝑓𝑓 and 𝑃𝑃�𝑓𝑓 are the minimum and maximum bounds on the universe of discourse 𝑌𝑌𝑓𝑓, 

𝑃𝑃𝑓𝑓𝑝𝑝 reflects the discretized points over the domain of 𝑌𝑌𝑓𝑓, and 𝑃𝑃�𝑓𝑓 is the singleton composite 

moment that represents the fuzzy consequent space of risk factor 𝑓𝑓. 

The fifth and final step of the FIS is defuzzification, which is effectively the 

extrapolation of a crisp value that is representative of the aggregate fuzzy set. This single 

value is the JRAM’s Risk Characterization, and answers the question of “how much risk?” 

As stated in the prior paragraph’s explanation of aggregation, the aggregate fuzzy 

membership function is indicative of the degree of truth to which the consequent is satisfied 

for all values of 𝑧𝑧 in 𝒁𝒁 (given the specific input values, it is likely that all values of 𝑧𝑧 

correspond with some nonzero truth degree). Accordingly, it is useful to extract a non-

fuzzy value, 𝑧𝑧̅, as output from the FIS from which further quantitative analysis can be 

conducted. While textbooks like Cox (1999) provide a more comprehensive accounting of 

the various methods employed for defuzzification (centroid, bisector, mean of maxima), 

the centroid calculation is predominantly practiced. In this method, also known as the 

“center of gravity” method, an expected value is determined by weighted average of the 

area under the aggregate membership function’s curve. This value corresponds to the point 

in the z-axis which equally bifurcates the output fuzzy region by area (Reveiz, 15). Applied 

to the example in Figure 23, centroid defuzzification yields the FIS output of 𝑧𝑧̅ = 54.6 (out 

of 100), indicating the level of risk that corresponds with the specified input variables. On 
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its own, this value can be evaluated against the consequent membership functions for Risk 

Level. In this case, the value coincides with medium risk. However, the output value is 

more informative when considered in relation to evaluations utilizing alternate inputs 

variables, as would be the case in Course of Action comparisons of the JPP. 

3.4.6 Risk Factor Consolidation 

While the output aggregate risk factors, 𝑃𝑃�𝑓𝑓, may simply be summed (or weighted 

and summed) to determine a total operational risk value, it is probable that dependencies 

exist between the individual risk factors that inhibit use of a strictly summative method 

for consolidation. In such cases, a correlation matrix can be used to account for the 

dependent relationships between output variables. The correlations may be derived from 

either experience data or expert opinion. The model’s total operational risk is therefore 

defined by 

 𝑂𝑂𝑅𝑅 = �(𝑃𝑃�1,𝑃𝑃�2, … ,𝑃𝑃�𝑚𝑚)�
1 𝜌𝜌12 𝜌𝜌1𝑚𝑚
𝜌𝜌21 1 𝜌𝜌2𝑚𝑚
𝜌𝜌𝑚𝑚1 𝜌𝜌𝑚𝑚2 1

��
𝑃𝑃�1
𝑃𝑃�2
𝑃𝑃�𝑚𝑚
� (35) 

where 𝑂𝑂𝑅𝑅 is the total operational risk, 𝜌𝜌𝑝𝑝𝑗𝑗 is the correlation coefficient of risk factors 𝑅𝑅 

and 𝑗𝑗, and 𝑚𝑚 is the total number of risk factors (Shang, 36). 

3.5 Inform Decision-Making 

 Having fully assembled a knowledge base consisting of membership functions and 

their corresponding propositional rule base, and having instituted the mathematical 

framework of triangular norm mappings particular to each of the model’s subprocesses, the 

RAFIS effectively defines the feasible region of the consequent space for all possible 
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combinations of input variables. Accordingly, the relationship of the consequent to any two 

antecedent variables may be modeled as a surface. In this manner, the pairwise examination 

of two inputs and their effect on the resultant output surface may be used to both validate 

the model’s encoded expertise (by way of membership functions and inference rules) but 

also inform decision-makers of the true non-linear nature of the relationship under 

consideration. While any arbitrary risk ontology is certainly likely to consist of more than 

two KRIs, the example, consisting exclusively of probability and severity, generates a risk 

surface in that is akin to the traditional risk matrix in common use, but tailored to the 

problem and without susceptibility to the complications enumerated in Chapter II. Figure 

24’s risk surface, or ‘fuzzy risk matrix,’ intuitively increases as both probability and 

severity increase; in this case, it is evident from the gradient associated with severity that 

the risk accrues more rapidly as a result of an increase in this factor, relative to probability. 

If attempting to mitigate overall risk through application of limited resources, this insight 

may indicate a better return of investment by addressing severity over probability. An 

alternate perspective may wish to pursue system stability or robustness by targeting flat or 

gradual surface regions not adjacent to precision-sensitive high gradient slopes. 

 

Figure 24. Example Risk Surface (Fuzzy Risk Matrix). 
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 While the individual Risk Factor output variables, the consolidated Operational 

Risk value, and the visual depictions of risk through fuzzy risk matrices constitute the 

products of the RAFIS, the end result is that these products aid the decision-maker in the 

JRAM’s Risk Evaluation, answering “how much risk is OK?” The RAFIS uniquely 

provides a numerical evaluation of risk that would otherwise have been a qualitative 

exercise. It also provides an expedient and consistent means for the reevaluation of risk 

following the implementation of Risk Management’s mitigation efforts, and, through the 

integrative and informative processes of staff estimates and operation assessment, may be 

updated and utilized throughout operational execution as a supplementary process to 

assessment. 
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IV. Analysis 

“An expert is someone who knows some of the worst mistakes that can be 
made in the concerned subject, and therefore understands how to avoid 
them.”10 

 
- Werner Heisenberg 
Der Teil und das Ganze (1969, 281) 

4.1 Chapter Overview 

This chapter demonstrates the use of the RAFIS through an abbreviated instance of 

a notional rotary wing tactical mission. The purpose is to examine the feasibility of building 

and evaluating a moderately-sized instantiation of the model, as well as considering its 

potential applicability to the problem of quantifying operational risk in general. Section 4.2 

discusses the model’s construction; it is principally concerned with Knowledge Elicitation 

and Problem Framing. The focus of Section 4.3 is Risk Assessment and Characterization. 

The Joint Planning Process is oriented on planning activities at the strategic and operational 

level; however, this tactical mission is examined due to the prevalence and accessibility of 

risk assessment documentation and tools employed in the management of aviation risk. 

Military aviation breeds, by its very nature, a risk-conscious and literature-prolific 

community. This documentation, coupled with the author’s experience as a Senior Army 

Aviator, serves as the knowledge base for the model’s construction. It is not the intent of 

this study to suggest the inadequacy of present aviation risk assessment tools, only to 

demonstrate use of the proposed model. 

                                                 
10 Heisenberg, Werner. (1969). Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik. München: 
R. Piper & Co Verlag. English translation from the original German by the author. Heisenberg is paraphrasing 
Niels Bohr’s recounting of a debate with Philipp Frank on causality and uncertainty during the Copenhagen 
Congress (The Second International Congress for the Unity of Science; June 21-26, 1936).  
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4.2 Model Construction 

 The primary sources of information for the model’s knowledge elicitation process 

are several variants of the ‘Risk Management Worksheet’, ‘Risk Common Operating 

Picture’ (RCOP), and the ‘Electronic Risk Assessment Worksheet’ (ERAW) employed by 

Army rotary wing units over the past decade. While the actual mathematical models 

employed are suspect from a risk-theoretic sense (they are strictly additive, but with 

conditional considerations), it is possible to elicit from them several knowledge elements 

vital to construction of the RAFIS. First, they establish a taxonomy of risk activities and 

risk factor areas from which further conversation may take place. This consideration 

informs the decision to use a “5 M” contextual lens: Man, Machine, Medium 

(environment), Management, and Mission; these will serve as the model’s output Risk 

Factors. Secondly, commonalities between the worksheets reveal an accepted vocabulary, 

not singularly in linguistic terms, but also semantics; for instance, crew member experience 

is categorized based on total flight hours, but the practiced categories are not based any 

regulatory distinction. The collection of language is used to define the risks contributing to 

the respective Risk Factors, but also the (potentially fuzzy) term sets that constitute the 

membership function conventions. 

 
Figure 25. “5 M” Risk Hierarchy. 
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Figure 25 is the product of this process and decomposes the Operational Risk into 

five output Risk Factors and 15 input Key Risk Indicators. The same source material 

provides indication of ranges (universes of discourse) and numerical categories that 

comprise the KRIs. For example, the Medium (environmental) consideration of Weather 

(𝐾𝐾𝑅𝑅𝐼𝐼8) is designed to account for a comprehensive number of causal phenomena; cloud 

ceiling, visibility, temperature, pressure altitude, winds, and precipitation are among these. 

Because of the high correlation of many of these phenomena, expert specification of the 

associated state variable’s value (for Weather) is necessary when resolving the model. 

Were the model to be decomposed further into independent variables, it would be possible 

to define the ceiling over a range from surface to Flight Level 180, or 18,000 feet (since 

operation in Class A airspace is necessarily conducted under Instrument Flight Rules; for 

practical purposes, ceiling might be considered irrelevant above this figure). The functional 

concern for tactical rotary aircraft is much lower in altitude, however, and there exist some 

commonly delineated categories at elevations below 500 feet Above Ground Level (AGL), 

above 500 AGL, above 700 AGL, above 1000 AGL, and above 1500 AGL. These 

correspond with decreasing degrees of risk. 

This discussion does not mean to be an exhaustive dialogue on weather or 

exclusionary to non-aviators or weathermen. Rather, it emphasizes the expert consultation 

required as input to formulate each membership function and KRI. Ceilings also serve to 

illustrate a reason as to why fuzzy thinking is arguably suitable given the already agreed 

upon crisply-delineated standards in practice. Cloud ceilings, as a weather phenomenon, 

are not temporally static; they constantly move due to winds. They might be tens of feet or 
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many thousands of feet thick, without distinction. They are not of uniform density or 

distribution; only broken or overcast conditions are considered to constitute a ceiling and 

a “measurement” of under 5/8ths of the sky results in a condition of ‘no ceiling’ (but perhaps 

infinitesimally shy of that criteria). Likewise, the different tools (ceilometers) used to 

measure cloud base (ceiling height) are subject to any number of different resolutions, 

capabilities, or calibrations. There are even mathematical formulations from which it can 

be calculated absent observation. Needless to say, a tactical mission that executes under 

assumption of one ceiling condition might actually encounter a very different scenario. 

Fuzzy logic minimizes the impact of natural variation or faulty forecast by modeling the 

surface as a continuous function, without having to account for every facet of reality or its 

measurement. 

In this particular implementation, the 15 KRIs are composed of 73 membership 

functions, each assiduously considered in the same fashion as the discussion on ceilings, 

and each possessing a unique characteristic shape, parameterization, and degree of fuzzy 

overlap. Finally, the logical rule base is built in which encodes the qualitative expert 

judgment on variable interactions. All feasible interactions need be considered; the 

appropriate number of interactions for this model requires 264 distinct risk judgements, 

recorded as a set of inductive rules, with each rule individually evaluated by the author. 

Appendix A contains the entire listing of membership functions, their parameters, and all 

logical rules. The formulation is then programmed into MATLAB. It is evident that the 

construction of large instances are demanding affairs; this model is relatively conservative 

with only 15 inputs and 5 outputs. 
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4.3 Model Evaluation and Results 

A fictional state vector, 𝑥𝑥, constituting the expected or observed numerical 

measures corresponding to the scenario’s KRIs in Figure 25, is generated as input to test 

the functionality of the model. The state vector is 

 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥𝑘𝑘 , … , 𝑥𝑥𝑖𝑖) 
(36) 

 = (900, 2, 18, 26, 83, 13, 19, 720, 6, 1, 50, 2.5, 12, 6, 4), 

where, by the formulation in Chapter III, 𝑥𝑥𝑘𝑘 is the quantified value corresponding to the 

𝑅𝑅𝑑𝑑ℎ KRI. For instance, the input associated with 𝐾𝐾𝑅𝑅𝐼𝐼8 is 𝑥𝑥8 = 720. The other constituent 

values are not arbitrarily chosen (although it would not be inadmissible by the model if 

they were); they represent a typical and realistic scenario reflecting appropriate crew 

selection for the particular mission and conditions. This is intended to convey interpretable 

results (non-realistic inputs are potentially interpretable, but produce either trivial or absurd 

results). Within the context of operational planning, these values would be derived from 

running estimates, wargame results, expert opinion, or actual measurement (enemy threat, 

for example, might be determined under the Intelligence Collection Plan). 

 The MATLAB model resolves a single run near-instantaneously on a Windows 10 

(x64) based system with dual E5-2680 CPUs at 2.50 GHz and 192 GB of system memory; 

the parallel nature of rule inference is suggestive of a low computational cost that grants 

risk analysts the ability to responsively apprise the model for updated state variable input 

or rapidly assess alternatives. In this regard, and despite the initial rigor of model creation, 

it is also notable that once formulated, adjusting model parameters is an equally casual 

process. While changing membership function shapes and individual inference rules are 
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relatively non-invasive, alterations to linguistic lexicon, like the addition or removal of a 

membership function altogether, demands the analyst’s strict attention as there are 

implications on the linguistic calculus of the rulebase. 

  Model output comes as crisp numerical values of degree equivalent to the number 

of Risk Factors. The response vector, 𝑃𝑃�, reflects the quantitative risk within the individual 

Risk Factor domains. The response vector corresponding to input vector 𝑥𝑥 is 

 𝑃𝑃� = (𝑃𝑃�1,𝑃𝑃�2, 𝑃𝑃�𝑓𝑓 , … , 𝑃𝑃�𝑚𝑚) = (4.09, 3.41, 3.6, 5.85, 5.86), (37) 

where 𝑃𝑃�𝑓𝑓 is the aggregate and defuzzified value corresponding to the 𝑓𝑓𝑑𝑑ℎ Risk Factor as 

depicted in Figure 25. It is clear that the fifth entry, Mission Risk, is the highest Risk Factor 

with a value of 𝑃𝑃�5 = 5.86 (though, correlations, if any, should be taken into account, as 

they are in Chapter III’s method for Risk Factor consolidation). In a vacuum, these output 

values have meaning only in their relative comparison. Individually, or as an aggregate OR 

value, they might be used to compare alternative scenarios run under the same model. As 

a framework for informing risk decisions, however, the fuzzy risk matrices reflect the entire 

topology of the solution space relative to the chosen pairwise KRIs. Whereas the point 

estimates are useful for comparing alternatives, decisions that are considerate of the point 

estimate’s adjacent topology are potentially more robust. Figure 26 depicts the three fuzzy 

risk matrices for Mission Risk, since it is the most severe category. There are three possible 

pairwise comparisons between the KRIs of Threat, Complexity, and Mission Type. 
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Figure 26. Mission Fuzzy Risk Matrices. 

In observing the three Fuzzy Risk Matrices, the objective is to determine a viable 

approach for the mitigation of Mission Risk. For reference, the three input KRI values are 

12 for Threat, 6 for Complexity, and 4 for Mission Type. While the digital model allows 3-

Dimensional manipulation and rotation of the matrices, printed versions require closer 

inspection for interpretation and sound diagnoses. A useful technique is to model a cross-

sectional profile-view of the respective surfaces, achieved by evaluating the model over 

the defined range of each KRI while holding all other inputs constant. This is effectively a 

sensitivity analysis on the variable; it isolates any variability induced by interaction of 

terms. 

 
Figure 27. Mission Risk Matrix Cross-Sections. 

The cross-sections in Figure 27 correspond with Figure 26’s risk matrices for their 

respective variables. The vertical blue lines reflect the variable’s initial (current) value. 

Supposing that risk reduction for any of the factors demands a resource expenditure 

commensurate with the degree of deviation desired, then efficient mitigation is achieved 
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by following ‘steepest descent’ paths of least resistance (clearly, this is not tautologically 

true; it is highly dependent on the resource cost function). Complexity’s profile appears 

most advantageous in this regard. Furthermore, Threat and Mission Type are, by definition, 

arguably exogenous to a greater extent than Complexity. Dependent on the mission’s 

criticality, Mission may even be an immutable feature of the scenario. Regardless, these 

are semantic considerations specific to the problem, not the model, and so standard 

convention dictates that that mission Complexity be reduced to the base of the amber-

colored slope with a target value of  𝑥𝑥14 = 4, indicated by the red line. Achieving this risk 

mitigation goal reduces the outcome risk vector to 

 𝑃𝑃�∗ = �𝑃𝑃�1,𝑃𝑃�2, 𝑃𝑃�𝑓𝑓 , … , 𝑃𝑃�𝑚𝑚� = (4.09, 3.41, 3.6, 5.85, 4.14), (38) 

which correctly reflects a change in the single KRI; in practice, the combined response of 

simultaneous change to multiple KRIs should be examined. Returning to the fuzzy risk 

matrices, the Complexity–Threat interaction reinforces the decision to mitigate Complexity, 

but suggests a reduction in Threat only if it can be reduced to a value below 𝑥𝑥13 = 6, an 

unlikely prospect in the scenario. The second figure, Mission Type-Complexity, suggests 

exclusive pursuit of Complexity reduction. Lastly, the coordinates of the Mission Type-

Threat interaction indicates a stable plateau at current levels, and should not be perturbed. 

Finally, a close inspection of the three risk matrices and their cross-sections is 

indicative of some minor erraticism. Specifically, Threat’s profile should exhibit 

monotonic behavior but has a trough at approximately 𝑥𝑥13 = 17 which is also observable 

as a divot in the Complexity–Threat surface at about 𝑥𝑥13 = 17, 𝑥𝑥14 = 6. In this case, 

scrutiny of the Threat membership functions reveals the cause; underpowered degree of 
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truths are attributed to numerical Threat values in the fuzzy intersection of that variable’s 

‘moderate’ and ‘high’ sets, a problem easily resolved by parameter adjustment to increase 

the amount of overlap. Other potential deficiencies may be the result of an errantly 

prescribed risk judgement encoded into the rulebase or some unrecognized interaction of 

terms. The ability to visually inspect response surfaces eases the difficulty of model 

validation and consistency checking, especially when soliciting feedback from subject 

matter experts. In the context of the JRAM and RAFIS, the cyclical interaction with staff 

provides a natural forum for the risk manager to facilitate model refinement. However, 

fuzzy risk matrices developed for KRI interactions that are designed with non-

monotonicity, inverse relationships (negative correspondence), or are purposely and 

severely non-linear may be unintuitive or of little value for visual interpretation, even if 

semantically correct in the model’s context. 
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V.  Conclusions and Recommendations 

“Finally, the general unreliability of all information presents a special 
problem in war: all action takes places, so to speak, in a kind of twilight, 
which, like fog or moonlight, often tends to make things seem grotesque and 
larger than they really are.”  
 

- Carl Von Clausewitz 
On War (1832, 140) 

5.1 Chapter Overview 

This chapter summarizes the results of the research with particular emphasis on 

Sections 5.2.1 through 5.2.4 which answer, in sequence, the Investigative Questions 

proposed in Chapter I. It also suggests a potential area for future research in Section 5.3, 

and offers a brief conclusion in Section 5.4. 

5.2 Conclusions of Research 

In 1965, Lotfi Zadeh established the fundamental concepts of fuzzy sets as an 

extension of classical set theory that permits the simultaneous membership of an object to 

diametrically exclusive sets by way of assigning a “grade of membership,” or degree of 

truth, to said object. Zadeh’s concept of fuzzy sets reconciles the real-world classes of 

objects whose membership criteria is imprecisely defined with the sharply defined criteria 

of random sets, and is therefore suggested to better align with human rationale and logic, 

“particularly in the domains of pattern recognition, communication of information, and 

abstraction” (Zadeh, 1965). A distinguishing feature of fuzzy logic is that its application 

often permits the adequate modeling of a system in which classical set and probability 

theories are otherwise insufficient. This is due to several dominant characteristics; that 

fuzzy models are robust against vague or subjectively measured data, that the inference 



www.manaraa.com

90 

rules necessary for the manipulation of fuzzy membership functions assist in establishing 

causal relationships among misunderstood or emerging variables, and that the structure of 

those membership functions readily accept linguistic variable input. The stated objective 

of this thesis is to begin the development of a viable method for the quantitative assessment 

of military operational risk in joint planning. It is natural that military operational risk, 

encompassed by the very difficulties that fuzzy logic addresses, be modeled using such a 

methodology.  

Four investigative questions (IQ) are proposed in Chapter I in order to structure the 

direction and content of the research. They are addressed in the succeeding paragraphs.  

5.2.1 Investigative Question 1.  

“How is operational risk addressed in current joint and Service literature?” 

 While the Service literatures are antiquated in their treatments on operational risk, 

the Joint Risk Analysis presents a conceptual framework that is both more doctrinally and 

mathematically sound. In particular, it recognizes the inconsistencies present in the Service 

literature, driven by discrete categorizations, and instead provides the military risk 

practitioner with a contour graph that properly acknowledges the interaction of probability 

and consequence as an ambiguous, but continuous, function. However, it fails to suggest 

any practical means of determining the exact nature of the interaction, leaving said risk 

practitioner with only a nebulous and philosophical conception of the framework’s 

meaning or potential use. In fact, the literature writ large is reticent on the issue of 

quantitative methodologies; only in a few instances does it suggest their utility, but almost 

as abruptly dismisses them in favor qualitative assessments made in linguistic terms. In 
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this sense, each Service possesses a distinct and often conflicting vocabulary that disallows 

inter-Service commensuration. Nevertheless, the conspicuous reluctance to prescribe a 

fixed mathematical formulation for risk quantification is not inappropriate; it withholds 

calculation in recognition of the interplay of fog and friction on the battlefield. In short, 

military conflict is characterized by incomplete and unreliable knowledge, a disappointing 

prospect for models reliant on probability and experience data, as are the risk matrices 

common to the Service literature. 

5.2.2 Investigative Question 2. 

“What challenges are presented by the current doctrinal means of 

quantitative risk evaluation?” 

 Risk matrices, the dominant method for communicating and interpreting risk within 

the DoD, are, despite their apparent benefits,  rife with potential complications that proceed 

from their basic mathematical premise of expected value, instead provoking fallacy and 

misinterpretation in execution. Risk matrices are demonstrably incapable of axiomatic 

application in that they cannot simultaneously satisfy monotonicity and soundness, a 

condition equating to discriminatory impotence. They additionally suffer from the potential 

for rank reversal, range compression, and are inherently error prone. The combination of 

these factors result in poor resolution, uninformative categorization, and the suboptimal 

allocation of limited resources. In aggregate, these limitations “suggest that risk matrices 

should be used with caution, and only with careful explanations of embedded judgments” 

(Cox [2], 497). Doctrine attempts to circumvent this general unreliability by advocating for 

their use as an aid in the subjective assignment of risk level by subject matter experts, rather 
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than their utility in objective quantification. However, inattentive contextual consideration, 

especially in instances of negative probability-consequence correlation, may produce 

outright harmful results in which the ‘cure is worse than the disease.’ 

5.2.3 Investigative Question 3. 

“What are the characteristics of fuzzy logic that suggest its ability to 

reconcile quantitative risk evaluation with its inherent challenges?” 

The approximate reasoning afforded by fuzzy inference systems “facilitates the 

representation of systems for which no… reasonable mathematical models exist [and for] 

systems which exhibit very complex and nonlinear behaviors” (Cox, 494). They provide, 

in effect, what amounts to model-free function estimation in that they resolve continuous 

functions absent a priori knowledge of the mathematical input-output relationships 

involved. Instead of these mathematical functions, subject matter experts articulate 

(imprecisely) the set of rules that dictates their behavior and approximates the 

correspondence between the propositional antecedents and consequents. The semantics of 

the respective predicates is captured in the linguistic variables of fuzzy sets, thereby 

associating the input and output spaces of two causally-linked fuzzy concepts. Ultimately, 

fuzzy systems are more flexible than their probabilistic counterparts; imprecision and 

ambiguity are characteristic features of a model’s structure rather than a forced element of 

its outcome. In addition to being universal approximators, Castro (1995, 629) and Cox 

(1999, 495) suggest that the good performance of fuzzy logic control systems can be 

attributed to their: 

- utilization of linguistic information, 
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- simulation of human thinking procedure, 

- ability to capture the approximate and inexact nature of the real world, 

- reduction of contradictory solutions to a fuzzy surface, thereby reflecting 
imprecision in probabilities, 
 

- provision of intuitively expressing concepts for which probability distributions are 
unknown, 

 
- granting of mathematically sound and semantic-based modeling capability at a high 

level of abstraction. 

5.2.4 Investigative Question 4. 

“Is the proposed model, a fuzzy inference system, suitable for the 

quantification of risk within the current military planning and risk 

frameworks?” 

 To an extent, in that it addresses the dichotomy between qualitative and quantitative 

methodologies, IQ4 is answered in the affirmative. In broad terms, it resolves the 

inconsistencies present in the DoD’s flawed use of risk matrices, incorporates the 

ambiguity present in linguistic categorization, and conducts logical reasoning utilizing 

natural language of expert opinion. It capably manages the input of complex, poorly 

understood, and vaguely-defined problems. It also generates as a byproduct of inference 

‘fuzzy risk matrices’ which are the response surfaces attributed to the pairwise comparison 

of two select input variables. When the output space is defined solely by those two 

contributing variables, then the ‘fuzzy risk matrix’ is likened to a traditional risk matrix for 

its intuitive and visually tractable nature; the logic, while concealed in an explicit sense, is 

generally transparent and facilitates an understandable discussion that promotes 



www.manaraa.com

94 

meaningful risk decisions. However, the complex interactions observed in Chapter IV’s 

model reveal an unintuitive relationship when several or more inputs contribute to 

construction of the model’s surface. 

 Incorporated as a subordinate mechanism of the JRAM, and acting in concert with 

the JPP, the RAFIS is a complementary and integrative process whose inclusion is non-

disruptive to present practices, leverages for the purpose of knowledge elicitation the 

information vectors already existent in planning doctrine, and promotes cross-staff 

synchronization in consuming risk data and driving the cyclical progression of risk 

communication and decision-making. However, a turnkey adoption of the methodology is 

problematic for two prevailing reasons. First, while conceptually intuitive, the construction 

of an initial model is a time-consuming procedure that requires the careful stewardship of 

the knowledge elicitation process as well as meticulous attention on the part of the 

knowledge engineer when specifying model parameters and inference rules. Second, the 

actual execution necessitates use of a robust program for mathematical calculation. While 

MATLAB’s Fuzzy Logic Toolbox is acceptable for modeling small- to medium-sized 

formulations, the graphical user interface is insufficient for large problems. Additionally, 

staffs may not possess the MATLAB licensing. 

5.3 Recommendations for Future Research 

Eliciting an inferential rule base sufficient for the operation of large scale models 

is a laborious process at best. Even in medium-sized executions, the ability to maintain 

consistency and confer meaning in the manual risk judgment of all pairwise combinations 

of Key Risk Indicators is a challenging prospect. Fuzzy adaptive systems are artificial 
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neural networks that incorporate machine learning via embedded parameter estimators to 

“adaptively infer and modify [their] fuzzy associations from representative numerical 

samples” (Kosko, 18). That is, provided training data, an adaptive fuzzy system may 

generate and refine fuzzy rule sets that not only relieves human operators of tedious 

replication but ultimately confers improved system performance. Specifically, future 

research should concentrate on the development of a Takagi-Sugeno type Adaptive Neuro-

Fuzzy Inference System (ANFIS) for risk appraisal. The foundational literature is 

Derivation of Fuzzy Control Rules from Human Operator’s Control Actions (Takagi & 

Sugeno, 1983) and ANFIS: Adaptive-Network-Based Fuzzy Inference System (Jang, 1993). 

The extension of the RAFIS to a ‘RANFIS’ may also have utility in the development of 

artificial intelligence assisted decision-making capable of leveraging the massive data 

streams generated from modern battlefields, or even in the emergence of autonomous  

systems making independent risk valuations while waging algorithmic warfare. 

5.4 Summary 

As an attempt to begin the development of a methodology for the quantitative 

assessment of operational risk, the RAFIS shows promise in confronting the known 

challenges; ambiguity is encoded as linguistic variables (fuzzy sets) whose composition is 

a continuous surface, rule-based logic addresses entangled causal relationships in a manner 

that mimics human approximate reasoning, and it produces meaningful crisp outputs and 

visual representations (fuzzy risk matrices). Most significantly, its real benefit is as an 

expert system; it recognizes the military imperative of subjective assessment by experts in 

their respective risk domains, and provides, perhaps, some fleeting insight into the coup 
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d’oeil that enables their qualitative judgments. The complexities of modern battlefields will 

only continue to compound, demanding decision support systems that are flexible, robust, 

and rapid in promoting a common understanding of emerging and dynamically evolving 

risks. While not a panacea for wholesale quantification of military operational risk, fuzzy 

logic may offer a credible alternative for informing risk decisions through its inheritance 

of the conscious, educated, and experienced thought of contributing experts. 
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Appendix A. MATLAB Fuzzy Inference System Formulation (.fis) 

This appendix presents the entire formulation of the Fuzzy Inference System as 

implemented in Chapter IV. The model was executed using MATLAB’s Fuzzy Logic 

Toolbox and consists of 15 input variables (KRIs), 5 output variables (Risk Factors), and 

264 inference rules. While the variables definitions are intuitive, the format of the inference 

rules is: 

𝑅𝑅𝑐𝑐𝑆𝑆𝑏𝑏𝑃𝑃(𝑚𝑚𝑆𝑆𝑚𝑚 𝑓𝑓𝑏𝑏𝑐𝑐𝑐𝑐𝑃𝑃), 𝑃𝑃𝑏𝑏𝑃𝑃𝑆𝑆𝑏𝑏𝑃𝑃(𝑚𝑚𝑆𝑆𝑚𝑚 𝑓𝑓𝑏𝑏𝑐𝑐𝑐𝑐𝑃𝑃) (𝑤𝑤𝑆𝑆𝑅𝑅𝐻𝐻ℎ𝑃𝑃) ∶ (𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑆𝑆𝑐𝑐𝑃𝑃𝑅𝑅𝑆𝑆𝑆𝑆), 

where there are 15 input columns, 5 output columns, and a connective value of (1) indicates 

the conjunctive case. In observing the rules, it is insightful to consider the sparsity of the 

array; the rules only assess the KRIs that contribute to the associated Risk Factor.  

 
 
[System] 
Name='RAFIS_FINALv1' 
Type='mamdani' 
Version=2.0 
NumInputs=15 
NumOutputs=5 
NumRules=264 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 
  
[Input1] 
Name='Man-Experience' 
Range=[0 2500] 
NumMFs=3 
MF1='Basic':'trapmf',[-1132 -126.9 600 1250] 
MF2='Senior':'trapmf',[600 1250 1750 2250] 
MF3='Master':'trapmf',[1750 2250 2500 3625] 
  
[Input2] 
Name='Man-Composition' 
Range=[0 3] 
NumMFs=3 
MF1='Tier-1':'trimf',[-1.2 0 1.2] 
MF2='Tier-2':'trimf',[0.3 1.5 2.7] 
MF3='Tier-3':'trimf',[1.8 3 4.2] 

[System] reflects the general framework of the FIS as a 
Mamdani-type system. It specifies the exact mathematical 
operators used for conjunction, disjunction, implication, 
aggregation, and the method of defuzzification. 

[Input1] and [Input2] are the 
first two of 15 KRIs belonging 
to the model. The naming 
convention specifies the 
associated RF (in this case, 
Man). Range reflects the 
domain of the universe of 
discourse. The number of 
constituent membership 
functions are specified, named, 
and parameterized. [Input1]’s 
are trapezoidal while [Input2]’s 
are triangular. The parameters 
represent the degree of truth at 
each vertex. 
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[Input3] 
Name='Man-Endurance' 
Range=[0 24] 
NumMFs=4 
MF1='Pumpkin':'trapmf',[-7.2 -0.8 5 8] 
MF2='Fatigued':'trimf',[6 9 12] 
MF3='Alert':'trapmf',[8 12 16 24] 
MF4='Rested':'trimf',[16 24 31.99] 
  
[Input4] 
Name='Man-Currency' 
Range=[0 90] 
NumMFs=3 
MF1='Recent':'trimf',[-36 0 36] 
MF2='Currrent':'trimf',[0 30 60] 
MF3='Uncurrent':'trapmf',[45 60 93.6 122] 
  
[Input5] 
Name='Machine-Readiness' 
Range=[0 100] 
NumMFs=3 
MF1='NMC':'trapmf',[0 0 50 75] 
MF2='PMC':'trimf',[50 75 100] 
MF3='FMC':'trimf',[75 100 140] 
  
[Input6] 
Name='Machine-Performance' 
Range=[0 20] 
NumMFs=4 
MF1='MTA<5'trimf',[-6.667 -2.22e-16 6.67] 
MF2='MTA<10'trimf',[0 6.667 13.33] 
MF3='MTA<15'trimf',[6.667 13.33 20] 
MF4='MTA<20'trimf',[13.33 20 26.67] 
  
[Input7] 
Name='Medium-Illumination' 
Range=[0 100] 
NumMFs=4 
MF1='Red':'trimf',[-33.33 0 20] 
MF2='Amber':'trimf',[0 15 30] 
MF3='Green':'trimf',[20 30 40] 
MF4='Day':'trapmf',[30 50 103.3 130] 
  
[Input8] 
Name='Medium-Weather' 
Range=[0 1500] 
NumMFs=4 
MF1='<500/1':'trimf',[-500 -7.105e-15 500] 
MF2='>500/1':'trimf',[0 500 1000] 
MF3='>700/2':'trimf',[500 750 1100] 
MF4='>1000/3':'trapmf',[900 1100 1550 1950] 
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[Input9] 
Name='Medium-Terrain' 
Range=[0 15] 
NumMFs=3 
MF1='Improved':'trimf',[-6 0 6] 
MF2='Adequate':'trimf',[1.48843484965305 7.48843484965305 
13.488434849653] 
MF3='Restricted':'trimf',[9 15 21] 
  
[Input10] 
Name='Management-Relationship' 
Range=[0 3] 
NumMFs=3 
MF1='Assigned':'trimf',[-1.2 0 1.2] 
MF2='Attached':'trimf',[0.3 1.5 2.7] 
MF3='TACON':'trimf',[1.8 3 4.2] 
  
[Input11] 
Name='Management-Planning' 
Range=[0 96] 
NumMFs=4 
MF1='Hasty':'trimf',[-32.1 -0.074 4] 
MF2='Short':'trimf',[0 12 24] 
MF3='Average':'trimf',[12 36 72] 
MF4='Deliberate':'trapmf',[48 72 99.2 124.8] 
  
[Input12] 
Name='Management-Guidance' 
Range=[0 3] 
NumMFs=3 
MF1='Specific':'trimf',[-1.2 0 1.2] 
MF2='Implied':'trimf',[0.3 1.5 2.7] 
MF3='Vague':'trimf',[1.8 3 4.2] 
  
[Input13] 
Name='Mission-Threat' 
Range=[0 24] 
NumMFs=3 
MF1='Low':'trimf',[-9.6 0 6.4] 
MF2='Moderate':'trimf',[4 11 18] 
MF3='High':'trimf',[14 24 33.6] 
  
[Input14] 
Name='Mission-Complexity' 
Range=[0 10] 
NumMFs=4 
MF1='Simple':'trimf',[-3.333 -1.11e-16 3.333] 
MF2='Routine':'trimf',[0 3.333 6.667] 
MF3='Irregular':'trimf',[3.333 6.667 10] 
MF4='Elaborate':'trimf',[6.6592898997687 9.9922898997687 
13.3222898997687] 
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[Input15] 
Name='Mission-Type' 
Range=[0 5] 
NumMFs=5 
MF1='BFC/Continuation':'trimf',[-1.25 0 1.25] 
MF2='MTF/RL-Prog':'trimf',[0 1.25 2.5] 
MF3='Air-Movement':'trimf',[1.25 2.5 3.75] 
MF4='AASLT':'trimf',[2.5 3.75 5] 
MF5='QRF/POI':'trimf',[3.75 5 6.25] 
  
[Output1] 
Name='Man' 
Range=[0 10] 
NumMFs=4 
MF1='Low':'trimf',[-3.333 0 3.333] 
MF2='Medium':'trimf',[0 3.333 6.667] 
MF3='High':'trimf',[3.333 6.667 10] 
MF4='Extreme':'trimf',[6.667 10 13.33] 
  
[Output2] 
Name='Machine' 
Range=[0 10] 
NumMFs=4 
MF1='Low':'trimf',[-3.333 0 3.333] 
MF2='Medium':'trimf',[0 3.333 6.667] 
MF3='High':'trimf',[3.333 6.667 10] 
MF4='Extreme':'trimf',[6.667 10 13.33] 
  
[Output3] 
Name='Medium' 
Range=[0 10] 
NumMFs=4 
MF1='Low':'trimf',[-3.333 0 3.333] 
MF2='Medium':'trimf',[0 3.333 6.667] 
MF3='High':'trimf',[3.333 6.667 10] 
MF4='Extreme':'trimf',[6.667 10 13.33] 
  
[Output4] 
Name='Management' 
Range=[0 10] 
NumMFs=4 
MF1='Low':'trimf',[-3.333 0 3.333] 
MF2='Medium':'trimf',[0 3.333 6.667] 
MF3='High':'trimf',[3.333 6.667 10] 
MF4='Extreme':'trimf',[6.667 10 13.33] 
  
[Output5] 
Name='Mission' 
Range=[0 10] 
NumMFs=4 
MF1='Low':'trimf',[-3.333 0 3.333] 
MF2='Medium':'trimf',[0 3.333 6.667] 
MF3='High':'trimf',[3.333 6.667 10] 
MF4='Extreme':'trimf',[6.667 10 13.33] 

[Output1] is the first of five Risk Factor 
linguistic variables belonging to the 
model. The naming convention, Man, 
indicates its association with the first 
four KRIs. Like those for the input 
variables, Range reflects the domain of 
the universe of discourse. The number 
of constituent membership functions 
(in this case, NumMFs = 4) are 
specified, named, and parameterized. 
The parameters represent the degree of 
truth at each of the triangular 
membership (‘trimf’) function’s three 
vertices. 
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[Rules] 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 1 1 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 1 2 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 1 2 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 1 2 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 1 3 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 1 3 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 1 3 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 1 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
1 1 4 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 1 4 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 1 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 2 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 2 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 2 3 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 2 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 2 3 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 2 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
1 2 4 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 2 4 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 3 1 1 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 1 2 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 1 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 2 1 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 2 2 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 2 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 3 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 3 3 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 3 3 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
1 3 4 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
1 3 4 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
1 3 4 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 1 1 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 1 2 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 1 2 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 1 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 1 3 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 1 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 1 3 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 

[Rules] consist of the 264 expert risk judgments that constitute the model’s 
inferential logic. In this compact notation, the first series of 15 values represent 
the 15 KRIs as the proposition’s antecedent. The next 5 values, comma delineated 
from the former, represent the model’s 5 RFs. The cardinality of each indicates 
the specific subordinate membership function called by the proposition. The 
parenthetical value (1) shows the rule weight. The final value ‘:1’ indicates the 
logical connective utilized (in this case, exclusively conjunctive). 
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2 1 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 1 4 2 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 1 4 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 2 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 2 1 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 2 2 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 2 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 2 3 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 2 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 2 3 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 2 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 2 4 2 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
2 2 4 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 3 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 3 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 3 1 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 2 1 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 2 2 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 2 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 3 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 3 3 2 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 3 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
2 3 4 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
2 3 4 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
2 3 4 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
3 1 1 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 1 1 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 1 2 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 1 2 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 1 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 1 3 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 1 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 1 3 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 1 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 1 4 2 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 1 4 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 2 1 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 1 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 2 2 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 2 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 2 3 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 3 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 2 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 2 4 2 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 2 4 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 3 1 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 3 1 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 3 1 3 0 0 0 0 0 0 0 0 0 0 0, 4 0 0 0 0 (1) : 1 
3 3 2 1 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
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3 3 2 2 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 3 2 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 3 3 1 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 3 3 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 3 3 3 0 0 0 0 0 0 0 0 0 0 0, 3 0 0 0 0 (1) : 1 
3 3 4 1 0 0 0 0 0 0 0 0 0 0 0, 1 0 0 0 0 (1) : 1 
3 3 4 2 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
3 3 4 3 0 0 0 0 0 0 0 0 0 0 0, 2 0 0 0 0 (1) : 1 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0, 0 4 0 0 0 (1) : 1 
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0, 0 4 0 0 0 (1) : 1 
0 0 0 0 1 3 0 0 0 0 0 0 0 0 0, 0 4 0 0 0 (1) : 1 
0 0 0 0 1 4 0 0 0 0 0 0 0 0 0, 0 4 0 0 0 (1) : 1 
0 0 0 0 2 1 0 0 0 0 0 0 0 0 0, 0 3 0 0 0 (1) : 1 
0 0 0 0 2 2 0 0 0 0 0 0 0 0 0, 0 3 0 0 0 (1) : 1 
0 0 0 0 2 3 0 0 0 0 0 0 0 0 0, 0 2 0 0 0 (1) : 1 
0 0 0 0 2 4 0 0 0 0 0 0 0 0 0, 0 2 0 0 0 (1) : 1 
0 0 0 0 3 1 0 0 0 0 0 0 0 0 0, 0 2 0 0 0 (1) : 1 
0 0 0 0 3 2 0 0 0 0 0 0 0 0 0, 0 1 0 0 0 (1) : 1 
0 0 0 0 3 3 0 0 0 0 0 0 0 0 0, 0 1 0 0 0 (1) : 1 
0 0 0 0 3 4 0 0 0 0 0 0 0 0 0, 0 1 0 0 0 (1) : 1 
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 1 2 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 1 3 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 1 2 2 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 2 3 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 3 1 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 1 3 2 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 1 3 3 0 0 0 0 0 0, 0 0 4 0 0 (1) : 1 
0 0 0 0 0 0 1 4 1 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 1 4 2 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 1 4 3 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 2 1 1 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 2 1 2 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 2 1 3 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 2 2 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 2 2 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 2 3 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 2 3 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 3 2 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 3 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 4 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 4 2 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 2 4 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 3 1 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 3 1 2 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 3 1 3 0 0 0 0 0 0, 0 0 3 0 0 (1) : 1 
0 0 0 0 0 0 3 2 1 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 3 2 2 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 3 2 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 3 3 1 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 3 3 2 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 3 3 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 3 4 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 3 4 2 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
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0 0 0 0 0 0 3 4 3 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 1 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 4 1 2 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 4 1 3 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 2 1 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 4 2 2 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 4 2 3 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 3 1 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 3 2 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 3 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 4 4 1 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 4 2 0 0 0 0 0 0, 0 0 1 0 0 (1) : 1 
0 0 0 0 0 0 4 4 3 0 0 0 0 0 0, 0 0 2 0 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 1 3 0 0 0, 0 0 0 4 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 2 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 2 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 2 3 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 3 1 0 0 0, 0 0 0 1 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 3 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 3 3 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 4 1 0 0 0, 0 0 0 1 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 4 2 0 0 0, 0 0 0 1 0 (1) : 1 
0 0 0 0 0 0 0 0 0 1 4 3 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 1 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 1 2 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 1 3 0 0 0, 0 0 0 4 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 2 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 2 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 2 3 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 3 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 3 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 3 3 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 4 1 0 0 0, 0 0 0 1 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 4 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 2 4 3 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 1 1 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 1 2 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 1 3 0 0 0, 0 0 0 4 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 2 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 2 2 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 2 3 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 3 1 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 3 2 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 3 3 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 4 1 0 0 0, 0 0 0 1 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 4 2 0 0 0, 0 0 0 2 0 (1) : 1 
0 0 0 0 0 0 0 0 0 3 4 3 0 0 0, 0 0 0 3 0 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 3, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 4, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 5, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 2 1, 0 0 0 0 1 (1) : 1 
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0 0 0 0 0 0 0 0 0 0 0 0 1 2 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 2 4, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 2 5, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 3 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 3 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 3 3, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 3 4, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 3 5, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 4 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 4 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 4 3, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 4 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 4 5, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 1 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 1 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 1 3, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 1 4, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 1 5, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 3, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 4, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 5, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 3 1, 0 0 0 0 1 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 3 2, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 3 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 3 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 3 5, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 4 1, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 4 2, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 4 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 4 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 2 4 5, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 1 1, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 1 2, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 1 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 1 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 1 5, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 1, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 2, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 5, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 3 1, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 3 2, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 3 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 3 4, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 3 5, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 4 1, 0 0 0 0 2 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 4 2, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 4 3, 0 0 0 0 3 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 4 4, 0 0 0 0 4 (1) : 1 
0 0 0 0 0 0 0 0 0 0 0 0 3 4 5, 0 0 0 0 4 (1) : 1 
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